
Introduction

Why do languages partition mental concepts into words the ways

they do?
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Introduction

Recent work suggests that language is shaped by pressure for

efficient communication1. This involves an information-theoretic

tradeoff between

• Cognitive load, or Complexity

• Informativeness

1
See for example: Gibson et al. (2017), Kemp et al. (2018) and Zaslavsky et al. (2019)
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Introduction

Numeral systems across languages reflect a need for efficient

communication2.

• Approximate systems.

• Exact systems.

• Recursive systems.
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Figure 1: Communication setup

studied in Xu et al. 2020
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Xu et al. (2020)
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Introduction

Is there a computational learning mechanism that leads to efficient

communication?
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Introduction

Is there a computational learning mechanism that leads to efficient

communication?

In this work we show how efficient approximate and exact numeral

systems emerge via Reinforcement Learning.
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Efficient Communication

What do we mean by efficient communication?
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Efficient Communication

We measure communication cost as expected surprisal3

C = −
∑
n,w

p(n)p(w |n) log p(n|w).

We measure complexity, or cognitive load, as the number of terms

used in the numeral system.

→ An efficient numeral system should, given a certain number of

terms, minimize the expected surprisal.

3
Gibson et al. (2017).
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Signaling Game and Reinforcement Learning

We consider a Multi-Agent Reinforcement Learning setup

consisting of two agents playing a signaling game with

• finite set of numbers N
• finite set of words W.
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Signaling Game and Reinforcement Learning

• 3 different need probabilities estimated from human data.

• Uniformed need probability

• Power-law estimated as in Xu et al. (2020).

• We consider the range [1, 20].
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Signaling Game and Reinforcement Learning

We consider the following

three reward functions

• rlinear(n, n̂) = 1− |n−n̂|20 .

• rinverse(n, n̂) = 1
1+|n−n̂| .

• rexp(n, n̂) = e−|n−n̂|.
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Signaling Game and Reinforcement Learning

In Q-learning an agent estimates the expected reward for each

state-action pair

FS : N ×W −→ [0, 1]

FL :W ×N −→ [0, 1].

Here FS and FL are parameterized by a neural network with one

hidden layer of 50 neurons and with ReLU activation.
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Signaling Game and Reinforcement Learning

Given a number n

1. The sender applies dropout to its hidden layer to get a

network fS .

2. The expected reward are then estimated for each pair (n,w).

3. The sender conveys the word satisfying

w∗ = argmaxw fS(n,w).

Dropout encourages exploration. This can be seen as an implicit

form of Thompson Sampling.
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Signaling Game and Reinforcement Learning

Agents are updated by minimizing the mean-squared error between

predicted reward and actual reward, using the optimizer Adam.
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Signaling Game and Reinforcement Learning

After the agents have converged we estimate p(w |n) as

p(w |n) ≈ 1

1000

1000∑
i=1

1(w = argmax
ŵ

fS ,i (ŵ , n)).

• If p(w |n) is not peaked we treat it as an approximate numeral

system.

• We take the mode of p(w |n) as an exact numeral system.
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Experimental Setup

• Maximum vocabulary size of 10.

• For each combination of need and reward we trained 6000

independent sender-listener pairs.

• We trained each pair for 10 000 updates.

• Batch size was 100.
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Results
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Figure 2: Linear reward and power-law prior.
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(a) Reward: Inverse, Prior: Power law
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(b) Reward: Exponential, Prior: Power

law

17



Results
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Figure 4: Linear reward and uniformed prior.
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Results
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Results

Consensus system using Correlation Clustering
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Figure 6: Consensus systems for 5 terms using the power-law prior.
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Conclusions

• RL agents can learn task specific communication protocols

which are near-optimal in information-theoretic sense.

• Same level of efficiency as human systems and with

similarities between artificial and human languages.
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