Introduction

Why do languages partition mental concepts into words the ways
they do?



Introduction

Recent work suggests that language is shaped by pressure for
efficient communication!. This involves an information-theoretic
tradeoff between

e Cognitive load, or Complexity

e Informativeness

1See for example: Gibson et al. (2017), Kemp et al. (2018) and Zaslavsky et al. (2019)



Introduction

Numeral systems across languages reflect a need for efficient

communication?.

e Approximate systems. I I
“Afew”

e Exact systems. -

e Recursive systems.

Figure 1: Communication setup
studied in Xu et al. 2020

2Xu et al. (2020)



Introduction

Is there a computational learning mechanism that leads to efficient
communication?



Introduction

Is there a computational learning mechanism that leads to efficient

communication?

In this work we show how efficient approximate and exact numeral

systems emerge via Reinforcement Learning.



Efficient Communication

What do we mean by efficient communication?



Efficient Communication

We measure communication cost as expected surprisal®
Zp p(w|n) log p(n|w).

We measure complexity, or cognitive load, as the number of terms
used in the numeral system.

3Gibson et al. (2017).



Efficient Communication

We measure communication cost as expected surprisal®
Zp p(w|n) log p(n|w).

We measure complexity, or cognitive load, as the number of terms
used in the numeral system.

— An efficient numeral system should, given a certain number of
terms, minimize the expected surprisal.

3Gibson et al. (2017).



Signaling Game and Reinforcement Learning

We consider a Multi-Agent Reinforcement Learning setup
consisting of two agents playing a signaling game with

e finite set of numbers N
e finite set of words W.

w ~ p(wln)

n ~ p(n)

Sender




Signaling Game and Reinforcement Learning

e 3 different need probabilities estimated from human data.
e Uniformed need probability
e Power-law estimated as in Xu et al. (2020).
e We consider the range [1,20].
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Signaling Game and Reinforcement Learning

. . —— Linear
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Signaling Game and Reinforcement Learning

In Q-learning an agent estimates the expected reward for each
state-action pair

Fs:NXW—>[0,1]
FL:WXN—>[O,1].

Here Fs and F; are parameterized by a neural network with one
hidden layer of 50 neurons and with RelLU activation.
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Signaling Game and Reinforcement Learning

Given a number n

1. The sender applies dropout to its hidden layer to get a
network fs.

Fy(nw) f(nw)
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Given a number n

1. The sender applies dropout to its hidden layer to get a
network fs.

Fy(nw) f(nw)

n ow now

2. The expected reward are then estimated for each pair (n, w).
3. The sender conveys the word satisfying
w* = argmax,, fs(n, w).

12



Signaling Game and Reinforcement Learning

Given a number n

1. The sender applies dropout to its hidden layer to get a
network fs.

Fy(nw) f(nw)

n ow now

2. The expected reward are then estimated for each pair (n, w).
3. The sender conveys the word satisfying
w* = argmax,, fs(n, w).

Dropout encourages exploration. This can be seen as an implicit

form of Thompson Sampling.
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Signaling Game and Reinforcement Learning

Agents are updated by minimizing the mean-squared error between
predicted reward and actual reward, using the optimizer Adam.
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Signaling Game and Reinforcement Learning

After the agents have converged we estimate p(w|n) as

1000

p(w|n) ~ 1000 Z 1(w = argmax fs ;(W, n)).

=

e If p(w|n) is not peaked we treat it as an approximate numeral
system.

e We take the mode of p(w|n) as an exact numeral system.
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Experimental Setup

e Maximum vocabulary size of 10.

For each combination of need and reward we trained 6000

independent sender-listener pairs.

We trained each pair for 10 000 updates.
Batch size was 100.
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Results
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Figure 2: Linear reward and power-law prior.
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Results
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Figure 4: Linear reward and uniformed prior.
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Results
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Consensus system using Correlation Clustering

Optimal System
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Figure 6: Consensus systems for 5 terms using the power-law prior.
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Conclusions

e RL agents can learn task specific communication protocols
which are near-optimal in information-theoretic sense.

e Same level of efficiency as human systems and with
similarities between artificial and human languages.
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