Why do languages partition mental concepts into words the ways they do?

Recent work suggests that language is shaped by pressure for efficient communication¹. This involves an information-theoretic tradeoff between

- Cognitive load, or Complexity
- Informativeness

¹See for example: Gibson et al. (2017), Kemp et al. (2018) and Zaslavsky et al. (2019)

Numeral systems across languages reflect a need for efficient communication 2 .

- Approximate systems.
- Exact systems.
- Recursive systems.

Figure 1: Communication setup studied in Xu et al. 2020

 2 Xu et al. (2020)

Is there a computational learning mechanism that leads to efficient communication?

Is there a computational learning mechanism that leads to efficient communication?

In this work we show how efficient approximate and exact numeral systems emerge via Reinforcement Learning.

What do we mean by efficient communication?

We measure communication cost as expected surprisal³

$$C = -\sum_{n,w} p(n)p(w|n)\log p(n|w).$$

We measure complexity, or cognitive load, as the number of terms used in the numeral system.

 $^{^3}$ Gibson et al. (2017).

We measure communication cost as expected surprisal³

$$C = -\sum_{n,w} p(n)p(w|n)\log p(n|w).$$

We measure complexity, or cognitive load, as the number of terms used in the numeral system.

 \rightarrow An efficient numeral system should, given a certain number of terms, minimize the expected surprisal.

³Gibson et al. (2017).

Signaling Game and Reinforcement Learning

We consider a Multi-Agent Reinforcement Learning setup consisting of two agents playing a signaling game with

- finite set of numbers ${\cal N}$
- finite set of words \mathcal{W} .

Signaling Game and Reinforcement Learning

- 3 different need probabilities estimated from human data.
- Uniformed need probability
- Power-law estimated as in Xu et al. (2020).
- We consider the range [1, 20].

We consider the following three reward functions

•
$$r_{\text{linear}}(n, \hat{n}) = 1 - \frac{|n-\hat{n}|}{20}$$

• $r_{\text{inverse}}(n, \hat{n}) = \frac{1}{1+|n-\hat{n}|}$.

•
$$r_{\exp}(n,\hat{n}) = e^{-|n-\hat{n}|}$$

In Q-learning an agent estimates the expected reward for each state-action pair

$$\begin{split} F_{\mathcal{S}} &: \mathcal{N} \times \mathcal{W} \longrightarrow [0,1] \\ F_{\mathcal{L}} &: \mathcal{W} \times \mathcal{N} \longrightarrow [0,1]. \end{split}$$

Here F_S and F_L are parameterized by a neural network with one hidden layer of 50 neurons and with ReLU activation.

Signaling Game and Reinforcement Learning

Given a number n

1. The sender applies dropout to its hidden layer to get a network f_S .

Signaling Game and Reinforcement Learning

Given a number *n*

1. The sender applies dropout to its hidden layer to get a network f_S .

2. The expected reward are then estimated for each pair (n, w).

Given a number *n*

1. The sender applies dropout to its hidden layer to get a network f_S .

- 2. The expected reward are then estimated for each pair (n, w).
- 3. The sender conveys the word satisfying

 $w^* = \operatorname{argmax}_w f_S(n, w).$

Given a number *n*

1. The sender applies dropout to its hidden layer to get a network f_S .

- 2. The expected reward are then estimated for each pair (n, w).
- 3. The sender conveys the word satisfying

 $w^* = \operatorname{argmax}_w f_S(n, w).$

Dropout encourages exploration. This can be seen as an implicit form of Thompson Sampling.

Agents are updated by minimizing the mean-squared error between predicted reward and actual reward, using the optimizer Adam.

After the agents have converged we estimate p(w|n) as

$$p(w|n) \approx \frac{1}{1000} \sum_{i=1}^{1000} 1(w = \operatorname*{argmax}_{\hat{w}} f_{S,i}(\hat{w}, n)).$$

- If p(w|n) is not peaked we treat it as an approximate numeral system.
- We take the mode of p(w|n) as an exact numeral system.

- Maximum vocabulary size of 10.
- For each combination of need and reward we trained 6000 independent sender-listener pairs.
- We trained each pair for 10 000 updates.
- Batch size was 100.

Figure 2: Linear reward and power-law prior.

Figure 4: Linear reward and uniformed prior.

Consensus system using Correlation Clustering

Figure 6: Consensus systems for 5 terms using the power-law prior.

- RL agents can learn task specific communication protocols which are near-optimal in information-theoretic sense.
- Same level of efficiency as human systems and with similarities between artificial and human languages.

References

- Yang Xu, Emmy Liu, and Terry Regier.Numeral Sys-tems Across Languages Support Efficient Communication:From Approximate Numerosity to Recursion. 2020.
- Noga Zaslavsky, Charles Kemp, Naftali Tishby, and TerryRegier. Color naming reflects both perceptual structure andcommunicative need. 2019.
- Edward Gibson, Richard Futrell, Julian Jara-Ettinger, KyleMahowald, Leon Bergen, Sivalogeswaran Ratnasingam,Mitchell Gibson, Steven T. Piantadosi, and Bevil R. Conway. Color naming across languages reflects color use.2017.
- Charles Kemp, Yang Xu, and Terry Regier. Semantic typology and efficient communication. 2018.