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Abstract

Life is full of decision-making problems where only partial information is available
to the decision-maker and where the outcomes are uncertain. Whether choosing a
restaurant for dinner, selecting a movie on a streaming service, or conveying concepts
during a lecture, the decision-maker observes only the results of their choices without
knowing what would have happened if it had acted differently. Because of this, the
decision-maker needs to carefully balance between using its current knowledge, to
make good decisions, and exploring the unknown to gather new information that
might lead to even better decisions in the future.

In this thesis, we explore several topics in reinforcement learning - a computational
approach to sequential decision-making under uncertainty. The first part investigates
how efficient communication emerges between reinforcement learning agents in
signaling games. The support for efficient communication, in an information-theoretic
sense, is an important characteristic of human languages. Our agents create artificial
languages that are as efficient as human languages as well as similar to human ones.
We also combine reinforcement learning with iterated learning and find that this
combination accounts better for human color naming systems than what any of the
models do individually.

The second part focuses on sample-efficient algorithms for multi-armed bandits.
We propose Thompson sampling-based methods for regret minimization in multi-
armed bandits with clustered arms. Additionally, we address finding optimal policies
with fixed confidence in bandits with linear constraints. For this problem, we
characterize a lower bound and illustrate how it depends on a non-convex projection
onto the normal cone spanned by the constraints. We leverage these insights to
derive asymptotically optimal algorithms for pure exploration in bandits with linear
constraints. Finally, we apply techniques from multi-armed bandits to develop active
learning strategies for ordering items based on noisy preference feedback.

Keywords: Reinforcement Learning, Multi-armed Bandits, Contextual Ban-
dits, Efficient Communication, Emergent Communication, Iterated Learning, Pure
Exploration, Color Naming, Numeral Systems, Preference Learning.
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Chapter 1

Introduction

Life is full of decision-making problems where only partial information is available
to the decision-maker and where the outcomes are uncertain. Whether choosing a
restaurant for dinner, selecting a movie on a streaming service, or conveying concepts
during a lecture, the decision-maker observes only the results of their choices without
knowing what would have happened if it had acted differently. Because of this, the
decision-maker needs to carefully balance between using its current knowledge, to
make good decisions, and exploring the unknown to gather new information that
might lead to even better decisions in the future. This trade-off is known as the
exploration-exploitation trade-off and is a central challenge faced by both human and
artificial decision-makers in any sequential decision-making problem with uncertain
outcomes.

A computational approach to decision-making under uncertainty is reinforcement
learning (Sutton and Barto 1998) which has grown in popularity in recent years. In
this framework, an artificial agent interacts with its environment (and potentially
other agents) and receives feedback in the form of rewards. The goal of the agent is
to learn a policy, i.e., a way of acting given a certain state of the environment, that
maximizes the agent’s rewards over time. Reinforcement learning has been successfully
applied in a wide range of domains such as recommender systems (Li, Chu, et al.
2010), navigation (Åkerblom et al. 2023), healthcare (Yu et al. 2021), games (Mnih
et al. 2015; Silver et al. 2016), and robotics (Kober et al. 2013). In addition, due to
its emphasis on learning from interactions with the environment, something that is a
fundamental aspect of both animal and human intelligence (Thorndike 1898; Rovee
and Rovee 1969; Piaget 2013), reinforcement learning has also been used as a model
in neuroscience and psychology (Niv 2009; O’Doherty et al. 2015; Gershman and
Daw 2017).

A decision-making problem that will be central to this thesis, and which is often
studied in cognitive science, is how to communicate certain concepts to others. Why
are concepts mapped to words the way they are? What processes lead to patterns
found in human languages? These are all central questions in cognitive science
and a prominent proposal suggests that human languages are shaped to support
efficient communication in an information-theoretic sense (Kemp, Xu, et al. 2018;
Gibson, Futrell, Piantadosi, et al. 2019). This means that human languages are
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simultaneously optimized to be simple, to ease learnability and reduce cognitive load,
and to be informative, to support accurate communication.

The main contribution of this thesis is connecting concepts from reinforcement
learning with results regarding efficient communication in human languages. We
will study how reinforcement learning agents that communicate with each other in
various signaling games (Lewis 1969) develop joint artificial languages. In the basic
version of these games, a speaker observes a concept and tries to communicate this
concept to a listener. Upon hearing the message, the listener guesses which concept
the speaker refers to from a set of available concepts. A reward is provided to both
the speaker and listener depending on how well they communicated. The agents start
as tabula rasa and develop an artificial language by maximizing their joint reward
function. We find that reinforcement learning leads to artificial languages with similar
levels of efficiency as their human counterparts and these artificial languages tend
to be human-like. Our results open up the question of whether similar mechanisms
could be involved in shaping human languages toward efficiency and suggest that
reinforcement learning may be a useful building block for studying language evolution
in silico.

The aforementioned signaling game falls into a class of reinforcement learning
problems known as multi-armed bandit problems (Lattimore and Szepesvári 2020). In
a bandit problem, a reinforcement learner sequentially interacts with the environment
by executing actions, also known as arms, and then obtains, potentially noisy, rewards
associated with the arms that were played. An extension of this model is the contextual
bandit where contextual cues are revealed to the learner to help guide it towards
arms with high rewards. In contrast to the general reinforcement learning problem,
temporal dependencies between actions and contexts are not modeled in a bandit
problem. This means that the current context and potential rewards are assumed
to be independent of previously observed actions and contexts. As a result, bandit
models are simpler and more tractable models for studying decision-making under
uncertainty compared to general reinforcement learning.

The signaling game can be viewed as a multi-agent contextual bandit. From the
speaker’s perspective, the observed concept provides contextual information and the
set of possible messages can be viewed as the set of arms in a bandit problem. The
message sent serves as a contextual cue for the listener who then has to decide what
concept, or arm, to play from the set of available concepts. This view was recently
leveraged to study how humans use language (Sumers et al. 2023) and we will make
use of it throughout this thesis.

In addition to studying the emergence of efficient communication via reinforcement
learning, a second contribution of this thesis is sample-efficient algorithms designed
for various multi-armed bandit tasks. In practice, there are often structures and
various constraints imposed on the set of arms available to the learner. These
structures might be exploited for faster learning while constraints can make the
learning problem both easier and harder. One example of such a structure studied
in this thesis is when a clustering of the arms is available to the learner. We also
study the effect of constraints on the arms and characterize how this changes the
hardness of the problem.
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The papers forming this thesis are listed below. They have been categorized
depending on whether they study the emergence of efficient communication or if
they study efficient learning in the multi-armed bandit framework.

Efficient communication

• Paper 1 (Kågebäck et al. 2020) proposes a multi-agent reinforcement learning
approach to the partitioning of semantic spaces. This is explored in the domain
of colors where the reinforcement learning agents develop color naming systems
that achieve a near-optimal trade-off between communicative efficiency and
complexity. The efficiency of the artificial naming systems is on the same level
of efficiency as color naming systems found in human languages.

• Paper 2 (Carlsson, Dubhashi, and Johansson 2021a) explores how efficient
numeral systems emerge in a communicative dyad of reinforcement learning
agents. The agents develop efficient exact and approximate numeral systems
that are similar to those found in human languages. These results give a
learning-theoretic account of how these systems might have emerged to be
efficient.

• Paper 3 (Carlsson and Dubhashi 2022) studies what impact coupling reinforce-
ment learning with pragmatic reasoning has on the efficiency of the resulting
languages. The paper also introduces a pragmatic reasoning model that better
accounts for the structure of the domain and the current context the agents
communicate in. The model is evaluated in the domain of colors and the results
suggest that the emerging vocabulary becomes less complex when the agent’s
reasoning capabilities grow stronger.

• Paper 4 (Carlsson, Dubhashi, and Regier 2024) revisits the color experiments
from Paper 1 and couples reinforcement learning with iterated learning, a
model for how language is shaped over generations of agents. The resulting
color naming systems better match human systems than the systems produced
in Paper 1 and the systems produced by exclusively applying iterated learning.
The paper also introduces a simple random model that generates highly efficient
naming systems that share very little similarity with human systems. This
highlights the importance of studying plausible evolutionary models that result
in efficient and human-like languages. Note that this paper is an extended
version of our conference contribution Carlsson, Dubhashi, and Regier (2023).
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Efficient learning in the multi-armed bandit framework

• Paper 5 (Carlsson, Dubhashi, and Johansson 2021b) introduces Thompson
sampling algorithms for multi-armed bandits with clustered arms. Clusterings
appear naturally in many decision-making tasks and we show, both theoretically
and empirically, that our proposed algorithms outperform baselines.

• Paper 6 (Carlsson, Basu, et al. 2024) introduces algorithms for finding the opti-
mal policy in multi-armed bandits where arms are subject to linear constraints.
We prove that our proposed algorithms have optimal sample complexity in an
asymptotic sense. The algorithms also outperform baselines in our empirical
evaluation.

• Paper 7 (Bergström et al. 2024) introduces an active sampling strategy, based
on multi-armed bandits, for ordering items under noisy comparison feedback.
Our proposed sampling strategy outperforms the baseline in both synthetic
and real-world experiments.

During the time as a PhD student, the following publications have been made
by the author but are not part of the thesis: Jergéus et al. (2022), Kinyanjui et al.
(2023), Thomas, Silvi, et al. (2024), and Balcıoğlu et al. (2024).

The rest of the thesis is structured as follows. In Chapter 2 we introduce
relevant concepts from reinforcement learning and multi-armed bandits. In Chapter 3
we discuss relevant concepts and results from cognitive science, regarding human
languages, and how reinforcement learning fits into this picture. This chapter is
mostly relevant for Paper 1 to Paper 4. Chapter 4 summarizes the papers that this
thesis is based on, and in Chapter 5 we discuss our conclusions and potential future
directions. The papers are appended in the second part of this thesis and have been
reformatted for uniformity, but are otherwise unchanged.



Chapter 2

Reinforcement learning and
multi-armed bandits

This chapter gives a brief introduction to reinforcement learning and bandit problems.
For a more comprehensive introduction to reinforcement learning see Sutton and
Barto (1998) and for some recent textbooks on multi-armed bandits see Slivkins
(2019) and Lattimore and Szepesvári (2020).

2.1 What is reinforcement learning?
The goal of reinforcement learning is to design computational agents that seek to
maximize a notion of reward in their corresponding environments (Sutton and Barto
1998). In contrast to supervised learning, where the agent is provided a dataset of
input-output pairs, the reinforcement learning agent gathers its data by interacting
with the environment. This gives rise to the famous exploration-exploitation trade-off,
where the agent must balance between exploiting its current knowledge about the
environment, to achieve high reward, and exploring new actions that might lead to
even higher rewards in the future.

Algorithm 1 The Markov decision making process.
Require: A set of states X , a set of actions A, a transition kernel P , a reward

function R, initial state x1, a policy π.
for t=1,... do

Take action at P A by sampling from the policy at „ πpxtq.
The environment samples a new state xt`1 „ P pxt, atq and reveals a reward

rt „ Rpxt, xt`1, atq.
end for

In reinforcement learning, a learner sequentially interacts with the environment:
It observes the current state of the environment, takes an action, and observes a
reward and the new state. The core challenge is to design a policy π that maximizes
the cumulative reward the agent achieves in the environment. The interaction with
the environment is often modeled as a Markov decision process (MDP) (Bellman

7
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1957). This model assumes the Markov property which says that the state-transition
only depends on the current state and the action taken in this state. The MDP
model is not central to this thesis but we illustrate it in Algorithm 1 so that the
reader can more easily see how the bandit models, introduced in later sections, are
simplifications of this more general framing of reinforcement learning.

2.2 Multi-armed bandits
In a multi-armed bandit, a reinforcement learner iteratively interacts with the
environment by playing an action, also known as arm, at at every time step t and
observes a reward, rt, drawn from a probability distribution, with unknown mean,
associated with the chosen arm. In contrast to the general reinforcement learning
problem, there is either no state or the state is constant in the multi-armed bandit and
as a result, the learner doesn’t need to model any temporal dependencies or relations
between state and reward. Hence, the learner only needs to model the relationship
between arms and rewards. The problems one considers in the bandit model can
often be categorized into either regret minimization or best-arm identification, also
known as pure exploration.

Algorithm 2 The multi-armed bandit.
Require: A set of arms A, a reward distribution for each arm R, and a policy π.

for t=1,... do
Play arm according to learner’s policy at „ πt.
Observe reward rt „ Rpatq drawn from a probability distribution associated

with at.
Update learner’s policy to πt`1.

end for

Regret minimization: In regret minimization for multi-armed bandits, the goal
of the learner is to maximize its cumulative reward over a time horizon T (Lai and
Robbins 1985). Maximizing the cumulative reward is equivalent to minimizing the
cumulative regret, defined as

RegretT “

T
ÿ

t“1
r˚

´ rt,

where r˚ denotes the reward drawn from the arm with the highest expected reward,
a˚. In this regime, the goal is often to design algorithms with good guarantees on
their expected cumulative regret, ErRegretT s. We study regret minimization for
bandits with clustered arms in Paper 5.

Fixed-confidence best-arm identification: In this regime, the goal of the
learner is to interact with the bandit until they are sufficiently confident in which
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arm is the one with the largest mean (Chernoff 1959). More formally, the learner
interacts with the bandit and stops at some random time, τ , and recommends some
arm, âτ , which should be equal to the best arm, a˚, with probability at least 1 ´ δ,
for some predefined δ P p0, 1q, i.e.,

P pâ ‰ aq ď δ.

In this setting, one would like to design learning algorithms that minimize the
expected sample complexity, Erτ s, while still ensuring that the fixed confidence
level δ is reached. The property that the learner stops and outputs the correct arm
with probability at least 1 ´ δ is referred to as δ-PAC. Fixed confidence best-arm
identification is relevant for Paper 6.

Fixed-budget best-arm identification: Here the learner is given a fixed budget
T and needs to play arms such that the probability of recommending the wrong arm,
once the budget is depleted, is minimized (Audibert and Bubeck 2010). This problem
is, at least conceptually, the dual of the fixed confidence setting even though some
open problems for the fixed budget are closed in the fixed confidence version (Qin
2022). The reason there is a gap between the settings is because many theoretical
results in the fixed-confidence regime are in an asymptotic sense, e.g., when δ Ñ 0 and
thus not easy to translate to the fixed-budget setting since this setting is inherently
non-asymptotic. In Paper 7 we study active learning for ordering and our algorithm
builds on results from fixed-budget best-arm identification.

Remark: Even though regret minimization and best-arm identification are related,
algorithms for regret minimization are not suitable for best-arm identification and vice
versa (Bubeck et al. 2009; Russo 2016). The main reason is that regret minimization
algorithms focus on quickly identifying good arms, to minimize regret, while best-arm
identification algorithms often need to allocate more plays to sub-optimal arms to
gather enough statistical evidence.

2.3 The contextual bandit

Algorithm 3 The contextual bandit.
Require: A set of arms A, a set of contexts X , a reward function R, and a policy

π .
for t=1,... do

Observe context xt P X .
Play arm according to learner’s policy at „ πtpxtq.
Observe reward rt „ Rpxt, atq.
Update learner’s policy to πt`1.

end for

In the contextual bandit, the learner observes, at every time step, a context xt

before deciding which arm to play. The reward for an arm a at time t is assumed to
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be an unknown and stochastic function of both the arm and the context, rpx, aq. The
key distinction between the contextual bandit and the general reinforcement learning
problem is that the context xt is assumed to be independent of previous contexts
and actions. Thus, the learner does not need to model any temporal dependences, in
contrast to general reinforcement learning. The contextual bandit model is mostly
relevant for the appended papers related to the emergence of artificial languages
(Paper 1 to Paper 4). In these papers, we consider various signaling games, properly
introduced in Section 3.2.1, that can be viewed as instances of the contextual bandit.
We also study a contextual bandit in Paper 5.

2.4 Lower bounds in multi-armed bandits
In multi-armed bandit work, an important task is to characterize what is theoretically
possible under some given assumptions. This is done by deriving information-theoretic
lower bounds, on either the cumulative regret or the sample complexity, that holds
true for any learning algorithm from some family of algorithms.

Let M be the set of all possible bandit environments. Let µ P M be a particular
bandit environment and let µa denote the mean reward of arm a. In the case when
the reward distributions are parameterized only by their mean, we let M “ RK . We
assume the best arm to be unique and define the set of alternative instances w.r.t. µ
as

Λpµq :“
"

λ P M : arg max
a

λa ‰ arg max
a

µa

*

.

The set Λpµq contains all possible bandit environments where the best arm differs
from the best arm in the environment parameterized by µ1. If the true environment is
µ but we, given the data we observe so far, think it is some λ P Λpµq, we will make the
wrong decision. Thus, bandit problems can be viewed as sequential hypothesis testing
where to goal is to sample arms in a way that ensures, with high probability, that our
estimate µ̂t of the true environment µ satisfies µ̂t R Λpµq. Exactly how the sampling
should be done is dictated by whether we are performing regret minimization or
best-arm identification.

In the fixed confidence best-arm identification setting, mention in Section 2.2,
Kaufmann et al. (2016) derived the following generic lower bound on the expected
stopping time, Erτ s, of any δ-PAC learner and for any M

Erτ s ě T pµq log 1
2.4δ

(2.4.1)

where T pµq is the solution to

T ´1
pµq “ sup

w:
ř

a wa“1
inf

λPΛpµq

ÿ

a

waKLpµa||λaq. (2.4.2)

1This definition of the alternative set only works for the multi-armed bandit and not the
contextual version. However, it is possible to extend this to the contextual case (Magureanu et al.
2014; Kato and Ariu 2024)
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Here, w is the fraction of plays the learner allocates to the different arms and λ
is some instance from Λpµq. Equation (2.4.2) can be interpreted as a zero-sum
game where the learner plays an exploration strategy, w, and an adversary plays an
instance λ that will be hard to reject given the strategy of the learner. Note that
this bound doesn’t make any assumptions on the structure of the model class and
is thus a generic bound. However, the exact value of T pµq depends on the specific
model class considered since the model class dictates the structure of Λpµq and thus
controls the set over which the infimum is taken over. This lower bound result serves
as a starting point for our work in Paper 6.

Moreover, in Chapter 5 we briefly discuss how these types of results might open up
interesting research directions when it comes to language evolution and learnability
of language. In short, one could let µ be the language a learner is trying to learn
and let Λpµq be the set of languages that differs distinctly from µ. One could then
ask whether the language µ is fundamentally easy to learn, measured by whether
the lower bound on the sample complexity is relatively small.

2.5 Relevant algorithms
This section introduces some of the bandit algorithms relevant for this thesis.

2.5.1 REINFORCE
The REINFORCE algorithm (Williams 1992) is an algorithm used in reinforcement
learning when the policy is parameterized by some θ. In the case of contextual
bandits, the update rule of REINFORCE is

θt`1 “ θt ` ηprt ´ r̄tq∇ log πθtpat|xtq,

where η denotes the learning rate and r̄t the average reward achieved so far. In
practice, the update rule above is often performed over a batch of interactions with
the environment to make training more stable. The subtraction by r̄t is not necessary
but often introduced to reduce variance and make the algorithm more stable (Sutton
and Barto 1998).

2.5.2 Thompson sampling
Thompson sampling is probably the oldest bandit algorithm for regret minimization
and was introduced in 1933 by William R. Thompson (Thompson 1933). It is
a Bayesian approach to bandits that is very simple and intuitive. Given a set of
observations so far, Ht, Thompson sampling keeps a posterior distribution over
possible bandit models, ppµ|Htq, acts by sampling one model from the posterior and
then plays the arm that is optimal in the sampled model. In Algorithm 4 we show
Thompson sampling for a generic multi-armed bandit task.

Thompson sampling is not just limited to the multi-armed bandit but can be
applied to contextual bandits (Agrawal and Goyal 2013; Riquelme et al. 2018)
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Algorithm 4 Thompson sampling for multi-armed bandit
Require: A set of arms A and a prior distribution p0 over bandit models µ.

Initialize history H1 “ tu.
for t “ 1, ... do

Sample model from posterior µ̂ „ ppµ|Htq.
Play arm at “ arg maxa µ̂a.
Observe reward rt and update history Ht`1 “ Ht

Ť

tpat, rtqu.
end for

and more general reinforcement learning tasks (Strens 2000). It has also been
shown to work well in practice (Chapelle and Li 2011). For cases where precise
Bayesian inference is not possible, e.g., when the model is a neural network, there are
approximate versions of Thompson sampling (Gal and Ghahramani 2016; Riquelme
et al. 2018).

2.5.3 Optimism in the face of uncertainty
Optimism in the face of uncertainty (OFUL) is a general approach decision-making
under uncertainty that is often applied to bandits (Auer et al. 2002; Abbasi-Yadkori
et al. 2011). The core idea is to compute confidence intervals for the expected reward
of each arm and then always play the arm with the highest upper confidence bound
on the reward. Hence, the learner is always optimistic about the environment and
plays the arm with the highest plausible expected reward. In Algorithm 5, we show
the UCB1 algorithm (Auer et al. 2002) which is used as a baseline in Paper 5. In the
algorithm µ̂a,t denotes the average reward of arm a and Ntpaq the number of times
the arm has been played.

Algorithm 5 UCB1
Require: A set of arms A of size K.

Play each arm once.
for t “ K, ... do

for each a P A do
Itpaq :“ µ̂a,t `

b

2 log t
Ntpaq

.
end for
Play arm at “ arg maxa Itpaq.
Observe reward rt and update µ̂a,t and Ntpaq.

end for

2.5.4 Best-arm identification algorithms
In the case of fixed-confidence best-arm identification, a standard design pattern
in the literature is to solve the lower bound in Equation 2.4.2, using one’s current
estimate of the environment, and then track the exploration policy suggested by
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the lower bound. The idea is that our estimate of the environment will eventually
be close to the true environment, which will result in our exploration policy being
close to the optimal one suggested by the lower bound. There are mainly two ways
of approaching the optimization problem in Equation 2.4.2. In the Track-and-Stop
algorithm (Garivier and Kaufmann 2016) the optimization problem is solved at every
time step to get a new exploration policy to track. Degenne et al. (2019) proposed
an alternative approach and instead view Equation 2.4.2 as a zero-sum game and
apply game-strategies to solve the lower bound. This results, in a strategy that never
solves the optimization problem to convergence and is thus computationally much
cheaper. Both these approaches are used in Paper 6.





Chapter 3

Reinforcement learning and
efficient communication

In this chapter, we introduce relevant results and concepts from cognitive science
and language evolution and discuss how reinforcement learning is connected to these
things.

3.1 Why do languages look the way they do?
Why do languages look the way they do? This intriguing question lies at the very
heart of linguistics and cognitive science (Zipf 1949; Chomsky 1986; Pinker and
Bloom 1990). Surprisingly, there is a large variation between human languages across
the globe (Evans and Levinson 2009). For example, some languages completely lack
recursive numeral systems (Pica et al. 2004); color naming systems vary both in size
and structure between different languages (Berlin and Kay 1969); spatial systems
vary between languages both w.r.t. frame of reference (Majid et al. 2004) and in
lexicalized concepts (Levinson et al. 2003). Still, there are recurring patterns that
are found in many languages (Dryer 1998; Von Fintel and Matthewson 2008).

It is suggested that at least some of these observations can be explained by the
interaction between the cognitive constraints of the agents and the properties of
the environment in which they communicate (Rosch 1978; Gärdenfors 2014; Gibson,
Futrell, Piantadosi, et al. 2019). Especially, it is suggested that languages are shaped
by the need to efficiently communicate information (Kemp, Xu, et al. 2018; Gibson,
Futrell, Piantadosi, et al. 2019). That is, languages are under pressure to be both
informative, to convey the intended meaning as accurately as possible, and simple,
to minimize cognitive load.

3.1.1 Efficient semantic categories
In this chapter, we are mostly concerned with the efficiency of semantic categories,
i.e., how well a set of words can be used to convey a set of meanings, or concepts. It
has been shown that category systems found in human languages support efficient
communication across a wide range of domains, e.g., color naming (Regier, Kay,

15
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et al. 2007; Zaslavsky et al. 2018), kinship terms (Kemp and Regier 2012), spatial
relations (Khetarpal et al. 2013; Chen et al. 2023), modals (Imel and Steinert-
Threlkeld 2022), season naming (Kemp, Gaby, et al. 2019), and numeral systems (Xu,
Liu, et al. 2020)1.

Speaker
𝑆(𝑤|𝑐)

Listener
𝐿(𝑐!|𝑤)

Need
 Distribution

Communication 
Channel

Accuracy(𝑐, 𝑐′)

Communication Loss(𝑐, 𝑐′)

𝑐 𝑐′𝑝 𝐶
𝑤

Figure 3.1: The efficiency of semantic categories, or naming systems, is usually
studied in a communication setup grounded in Shannon’s information theory. A
concept is drawn from a need distribution over possible concepts and given to a
speaker. The speaker acts as an encoder and encodes the concept into a word.
The word is communicated over a, possibly noisy, channel to a listener. The
listener then decodes the message into a concept. The informativeness of the
speaker is measured in how well the listener’s reconstruction matches the original
concept in expectation over the need distribution.

These works all ground their notion of efficiency in the classical communication
setup of Claude Shannon (Shannon 1948), see Figure 3.1. In this setup, a speaker
tries to communicate a certain concept c, from a set of concepts C, to a listener by
uttering a certain word w drawn from a set of words W according to the speaker’s
distribution Spw|cq. Upon hearing the word, the listener decodes the message into
a concept using the distribution Lpc|wq, and the communication accuracy, or loss,
is measured based on how well the listener’s reconstruction matches the original
concept the speaker had in mind. These concepts are assumed to be drawn from
a need distribution, ppcq that controls how often the speaker has to refer to various
concepts. The need distribution is often skewed and puts more emphasis on certain
concepts, e.g., in the numeral domain the quantities 1 and 2 are more frequently
communicated than the quantity 78 (Xu, Liu, et al. 2020). A language is said to
be efficient, under a certain need distribution, if it finds a near-optimal trade-off
between language complexity and expected accuracy. That is, the language is near
the Pareto frontier between informativeness and complexity, see Figure 3.2.

There are various ways of measuring the complexity and informativeness, or
communication loss, of a naming system. One way of measuring the loss of information

1Note that some of these works consider the minimization of communication loss, rather than
maximization of accuracy/informativeness, given a certain level of complexity. However, these
problems are essentially duals of each other.
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Figure 3.2: Illustration of the trade-off between complexity and accuracy studied
in, e.g., Kemp, Xu, et al. (2018) and Zaslavsky et al. (2018). The Pareto frontier
corresponds to the languages that achieves highest possible informativeness given
a fixed level of complexity. Thus, it is not possible to improve the informativeness
of these languages without increasing their complexity as well. As a result, the
blue triangles correspond to impossible languages that cannot exist. The green
boxes corresponds to highly inefficient languages since the have a high complexity,
and induces a high cognitive load on the user, while they do not support accurate
communication. It is suggested that human languages find a near-optimal balance
between these two forces and populate the region close to the Pareto frontier, like
the red circles.

during communication is the expected surprisal (Gibson, Futrell, Jara-Ettinger, et al.
2017)

ES :“ ´
ÿ

c,w

ppcqSpw|cqLpc|wq.

Another approach measures the expected KL-divergence between the speakers uncer-
tainty about the concept, Spcq, and the listener distribution (Kemp, Xu, et al. 2018;
Xu, Liu, et al. 2020)

EKL :“
ÿ

c,w

ppcqSpw|cqKLpSpcq||Lpc|wqq.

Recall that the KL-divergence is defined as KLpSpcq||Lpc|wqq “
ř

c Spcq log Spcq

Lpc|wq
.

The complexity of a language can for example be measured by number of words used
by the speaker (Regier, Kay, et al. 2007) or by the number of rules needed to define
the naming system of the speaker (Kemp and Regier 2012; Xu, Liu, et al. 2020).

Another approach for measuring complexity and informativeness is given by
Zaslavsky et al. (2018) who recently gave the efficiency hypothesis a firm theoretical
foundation by grounding it in the independent Information-Bottleneck (IB) princi-
ple (Tishby et al. 1999). In short, the IB framework suggests that the complexity of
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Figure 3.3: (left) The Munsell chart used to collect the WCS data. (right) Color
chips from the Munsell chart represented in 3 dimensional CIELAB space.

a language should be measured by the mutual information between the speaker’s
mental representation of a concept and words, ISpM ; W q. The accuracy is measured
as the mutual information between actual concepts and words ISpC; W q and this
can be shown to measure the similarity between the speaker’s and listener’s mental
representations. The framework of Zaslavsky et al. (2018) is further summarized in
the Appendix of Paper 4.

In Paper 1 and Paper 2, we use number of words as the complexity measure,
and the relevant measures of informativeness are ES and EKL. The IB framework of
Zaslavsky et al. (2018) is relevant for Paper 3 and Paper 4.

Efficient color naming systems

In Paper 1, Paper 3, and Paper 4 we study how efficient communication emerges in
the domain of colors and compare to how human languages partition the color space.
These papers rely on the data from the World Color Survey (WCS) (Cook et al.
2005) which contains color naming data from 110 non-industrial languages, with
approximately 25 speakers of each language participating in the survey. The speakers
were asked to name each of the 330 color chips presented in the Munsell chart in
Figure 3.3. The resulting data shows a large variation in color naming between
languages, see Figure 3.4, but patterns between languages are also observed (Berlin
and Kay 1969). As mentioned earlier, recent work suggests that the languages in
the WCS support efficient communication (Regier, Kay, et al. 2007; Zaslavsky et al.
2018).

Efficient numeral systems

Numeral systems vary between languages, both in terms of structure and number
of terms, (Hurford 1987; Hammarström 2010; Comrie 2013). Some languages, like
Swedish or English, have recursive numeral systems and thus an infinite set of numeral
terms generated from a finite set of rules. However, there are languages without
any recursive numeral systems, where precise description of a numeral can only be
done in an restricted range, referred to as exact restricted numeral systems, or where
numeral terms only have an approximate meaning, referred to as approximate numeral
systems. In an exact restricted system, each term refers to a precise interval of the
numberline, with one such example being t’one,’ ’two’, ’three’, ’larger than three’ u,
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BerikWobe Culina

Figure 3.4: Wobe (Ivory Coast), Culina (South America), and Berik (Indonesia)
are languages in the WCS data with different numbers of color terms. The top
row illustrate the mode map of each language relative to the Munsell chart. That
is, each color chip in the Munsell chart is assigned the word most frequently used
by speakers of that language and colorized by its average color in the CIELAB
space. Thus, each colorized region corresponds to a color term and indicates
the region of the color space covered by that particular term. Since speakers of
the same languages are inconsistent with each other, the color terms can also be
viewed as soft clusters or distributions. This is illustrated in the bottom row where
we instead highlight level sets of the color terms. Here, unfaded area indicates
the level sets between 0.75 ´ 1.0 while the faded area indicates the sets between
0.3 ´ 0.75.

while the terms in an approximate system have a fuzzy meaning, e.g., ’a few’ or
’many’. Xu, Liu, et al. (2020) recently argued that numeral systems support efficient
communication and these results are relevant for Paper 2.

3.2 Simulating language evolution
If we accept the hypothesis that language is, at least partially, shaped by efficiency,
a natural question is:

How does language become efficient?

In Paper 1, Paper 2, Paper 3 and Paper 4 we explore this question by simulating
language evolution using reinforcement learning.

The idea of simulating language evolution with artificial agents was pioneered
by Steels (1995) which sparked interest in studying how language can emerge in
artificial systems (e.g. , Shennan (2001), Kirby (2002b), Wagner et al. (2003), Smith
and Hurford (2003), Steels and Belpaeme (2005), Griffiths and Kalish (2007), Skyrms
(2010), Jäger et al. (2011), and Dale and Lupyan (2012)). Recent developments in deep
learning have rekindled this interest in the emergence of language in artificial systems
(e.g. , Foerster et al. (2016), Lazaridou, Peysakhovich, et al. (2017), and Havrylov
and Titov (2017)) since it is now feasible to conduct more complex experiments,
compared to what was previously possible. These recent works often study the
emergence of language in a communicative dyad consisting of deep reinforcement
learning agents. In these works, agents often start as tabula rasa and develop a
grounded language solely from maximizing a joint reward, see Section 3.2.1 below
for a detailed description.
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3.2.1 Reinforcement learning and the signaling game

There is a growing body of work that explore the emergence of communication in
collaborative multi-agent reinforcement learning (Jorge et al. 2016; Foerster et al.
2016; Lazaridou, Peysakhovich, et al. 2017; Havrylov and Titov 2017; Mordatch and
Abbeel 2018; Chaabouni et al. 2021; Downey et al. 2022; Lian et al. 2023; Thomas,
Santos-Rodriguez, et al. 2022; Guo, Hao, et al. 2024). A central concept in this line
of work, as well as in this thesis, is the Lewis signaling game (Lewis 1969), which is
shown in Algorithm 6 and resembles the communicative setup in Figure 3.1.

Algorithm 6 Lewis signaling game.
for t=1,..., T do

Speaker observes ct „ ppcq and samples a signal wt from the policy Spw|ctq.
Listener observes wt and samples a state c1

t from the policy Lpc1|wtq.
Both speaker and listener observes the reward rpct, c1

tq and update their policies
using some reinforcement learning algorithm.
end for

This game proceeds as follows: The speaker observes a concept c drawn from a
set of possible concepts C according to the probability distribution p. After observing
c, the speaker samples a word w from a set of words W according to its distribution
Spw|cq. The word is observed by a listener who must infer the concept c based on
the word w. This is done by sampling from the distribution Lpc1|wq. A joint reward,
rpc, c1q, is given to both agents based on how well the listener’s reconstruction of the
concept, c1, matches the original concept c. The core idea is that the agents will
start as tabula rasa, the words in W carry no meaning and the agents will converge
to a joint language by maximizing the reward. Hence, they develop a language that
is grounded in the current environment and the reward function.

Note that the speaker and listener are solving contextual bandit problems. The
speaker is solving a contextual bandit task where concept c is the context and the
action is uttering a word w. The listener is solving a contextual bandit where the
context is the word w and the action is choosing a concept c1. In Paper 1, Paper 3 and
Paper 4 we apply the REINFORCE algorithm (Williams 1992) to these contextual
bandit problems while we in Paper 2 apply a randomized approach that mimics
Thompson sampling (Gal and Ghahramani 2016).

There is also recent work exploring emergent communication using the evolution-
ary model replicator dynamics (Imel, Futrell, et al. 2023; Imel 2023). This model
is tightly connected to reinforcement learning, see Börgers and Sarin (1997). In
fact, a particular version of the bandit algorithm follow-the-regularized-leader (Cesa-
Bianchi and Lugosi 2006) is equivalent to a finite-time version of the replicator
dynamics (Mertikopoulos and Sandholm 2016; Hennes et al. 2020).

A reader interested in knowing more of about the current state of emergent
communication in reinforcement learning might find the following two surveys useful,
Lazaridou and Baroni (2020) and Boldt and Mortensen (2024).
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3.2.2 Why reinforcement learning?

The fact that the reinforcement agents develop their language from scratch makes
the setup described in the earlier section a powerful tool for simulating language
evolution and exploring the question of what mechanisms lead to the emergence of
efficient communication.

We can further motivate the use of reinforcement learning for simulating lan-
guage evolution by viewing it through the lens of Marr’s famous three levels of
analysis (Marr 1982), a decomposition that offers both functional and mechanistic
views on information processing systems. Marr proposed that any such system
can be understood by studying it on three different levels, the computational, the
algorithmic, and the implementation level. At the computational level, the goal of
the system, or agent, is defined, i.e., what type of computational problem is the
agent trying to solve. At the algorithmic level, we ask what algorithm the agent is
deploying to solve the computational problem. At the implementation, or hardware,
level, the focus is on how the algorithm is realised, or implemented.

Further, as argued by Niv and Langdon (2016), reinforcement learning spans all
three of Marr’s levels. At the computational level, the problems a reinforcement
learning agent usually tries to solve consist of maximizing and/or predicting future
rewards. To connect this to the functional view on language offered by Kemp,
Xu, et al. (2018) and Gibson, Futrell, Piantadosi, et al. (2019), we note that in a
collaborative setting where agents have to coordinate, being informative is often be a
prerequisite for reward maximization. The more informative a message is, the better
the agents can coordinate, which in the end yields higher rewards for the agents. In
this way, we can view informativeness as a sub-goal the agents need to achieve to solve
the problem of maximizing rewards. This is in line with the goal-driven paradigm
for language learning in neural models explored by e.g., Lazaridou, Peysakhovich,
et al. (2017), Havrylov and Titov (2017), and Mordatch and Abbeel (2018).

At Marr’s algorithmic level, reinforcement learning offers several algorithmic
solutions to the problem of maximizing reward, e.g., policy optimization, temporal-
difference learning, Thompson sampling, and optimistic principles. Some of these
algorithmic solutions have been used in neuroscience and psychology to model
learning in both single-agent tasks (Niv 2009; Ludvig et al. 2011; Tomov et al. 2021)
as well as social tasks (Jones et al. 2014). It is also worth mentioning that there
are intriguing connections between classical reinforcement learning techniques for
handling the exploration-exploitation trade-off, like Thompson sampling, and how
humans seem to approach this trade-off (Gershman 2018; Schulz and Gershman 2019).
Going back to language evolution and the emergence of efficient communication, we
argue that reinforcement learning introduces a natural bias towards simplicity at
the algorithmic level. This is because multiple agents need to converge to a joint
language by interacting with each other, which results in a bias towards solutions
that are easily accessible for their learning algorithms, and simple languages should
be easier to learn than complex ones (Kirby, Cornish, et al. 2008; Kirby, Tamariz,
et al. 2015; Carr et al. 2020). One could potentially challenge the various notions of
complexity in the efficient communication literature and simply ask whether or not
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learnability itself serves as a sufficient measure of simplicity (Steinert-Threlkeld and
Szymanik 2019; Steinert-Threlkeld and Szymanik 2020).

Furthermore, there are connections between certain neurons in the brain and
reward predictions (Schultz et al. 1997; Niv 2009; Dabney et al. 2020) which suggest
that reinforcement learning might also be present at the hardware level in the brain.
However, we want to highlight that these results from neuroscience, regarding the
hardware level, are not relevant to this thesis. The papers summarized later in this
chapter all consider agents with simple neural networks, updated using gradient
descent, as “hardware”, and it is unclear whether this mimics the architecture of the
brain in any sensible way.

Hence, in the context of this thesis, reinforcement learning is primarily relevant
at Marr’s computational and algorithmic levels.

3.2.3 Iterated learning

A very influential model for cultural evolution is iterated learning (Kirby 2001; Smith,
Kirby, et al. 2003). Iterated learning models how language evolves over generations
of agents, see Figure 3.5, and has similarities to the children’s game telephone where
a message is whispered from person to person. In iterated learning, a generation of
agents will learn their language from data generated from the previous generation
and then generate data that the next generation will learn from2. This model has
been implemented in the lab, with real humans, to show how various language
structures emerge (e.g., Kirby, Cornish, et al. (2008), Smith and Wonnacott (2010),
Xu, Dowman, et al. (2013), and Verhoef et al. (2014)), as well as with artificial agents
(e.g., Thompson et al. (2016), Carcassi et al. (2021), and Kirby and Tamariz (2022)).

Dataset 𝐷! Dataset 𝐷"

Generation 1 Generation 2 Generation 3

…

Figure 3.5: In iterated learning, one generation of agents learn their language
from a finite dataset generated from the previous generation. This generation
then produces a new dataset that is passed to the next generation.

2Note that the iterated learning process can be applied to any scenario where one agent learns
its behavior from other agents, not just language. However, we are only interested in the application
to language evolution in this thesis.
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…
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…

Figure 3.6: Illustration of the NIL algorithm (Ren et al. 2020). The algorithm
alternates between communication within a generation, and learning across gener-
ations.

The transmission between generations forms a Markov chain, and it has been
shown that iterated learning with Bayesian agents, that use the language with
the highest posterior probability, converges to a stationary distribution that is an
exaggeration of the agents’ prior distribution (Griffiths and Kalish 2007). This
suggests that cultural evolution, over generations, amplifies learning biases and
results in languages that are easy to learn for the agents. This is not hard to imagine,
even outside the Bayesian framework, since learning language from a finite set of
samples creates a bottleneck (Zuidema 2002; Kirby 2002a; Kirby, Tamariz, et al. 2015)
that restricts what type of languages can emerge and induces a bias towards languages
that are simple and easy to learn from a small set of samples. This simplicity bias
has been observed in iterated learning experiments with humans (Kirby, Cornish,
et al. 2008) and a possible explanation is that learners apply Occam’s razor and,
given several possible languages that fits the data, choose the simplest one. To
connect to Marr’s levels of analysis, iterated learning tends to amplify the biases in
the algorithmic level of the agent, i.e., the biases in the specific learning algorithm
used by the agent.

The fact that iterated learning has a clear bias towards simplicity suggests that
it plays a part in the emergence of efficient communication. Interestingly, Carstensen
et al. (2015) showed, in a series of human simulations, that iterated learning not
only leads to simpler systems but also gravitates towards more informative ones.
One way these findings can be interpreted is that iterated learning provides a bias
towards both simplicity and informativeness and thus provides an account for the
emergence of efficient communication. This is also in line with previous findings
that language learners are biased towards efficient languages (Fedzechkina et al.
2012). However, as noted by Carr et al. (2020), these results are in contrast with
other works which suggest that (iterated) learners have a bias towards simple and
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uninformative languages and that an informativeness bias only arises in the presence
of a communicative task (Kirby, Tamariz, et al. 2015; Motamedi et al. 2019; Kirby
and Tamariz 2022). See also Rafferty et al. (2011) for evidence that learnability does
not fully account for the presence of linguistic universals.

The argument that learning needs to be coupled with communicative tasks for
efficient communication to arise suggests that one could combine iterated learning
with goal-driven learning approaches, such as reinforcement learning, to simulate
language evolution. Such a model has been proposed by Kirby, Tamariz, et al.
(2015) and recently explored in the context of deep learning by Ren et al. (2020)
who introduced the neural iterated learning (NIL) algorithm, see Figure 3.6. Ren
et al. (2020) showed that this algorithm leads to the emergence of compositional
language in deep learning models (see also Guo, Ren, et al. (2020)). The NIL model
alternates between cultural evolution over generations of artificial agents, using
iterated learning, and intra-generational communication using reinforcement learning.
This type of model is interesting since it models language evolution on two different
time scales, the slow cultural evolution over generations and the fast, goal-driven,
learning within a generation, as well as having very clear biases at every stage of the
model. In Paper 4, we use NIL to argue that iterated learning and communication
together account for efficient and human-like color naming systems, see the summary
in Section 4.4.



Chapter 4

Summary of included papers

This chapter provides brief summaries of the appended papers.

4.1 Paper 1: A reinforcement-learning approach
to efficient communication

In Paper 1 we present a multi-agent computational approach to partitioning semantic
spaces using reinforcement learning. Two agents communicate about colors in a noisy
environment using a finite vocabulary, see Figure 4.1. Our two-agent paradigm closely
mirrors the information-theoretic frameworks of Regier, Kemp, et al. (2015) and
Gibson, Futrell, Jara-Ettinger, et al. (2017) and our main contribution is the insight
that an, independently motivated, computational learning mechanism accounts for
the emergence of efficient color naming systems.

Figure 4.1: The communication setup considered in Kågebäck et al. (2020).

25
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In our model, a speaker observes a color, represented in CIELAB space, and
has to communicate this color to a listener. A joint reward, that measures the
similarity between the color the speaker intended to communicate and the listener’s
reconstruction, is given to both agents. The agents are implemented as neural
networks with one hidden layer and are updated using REINFORCE over a sequence
of rounds of the signaling game. We consider two different versions of this game: one
variant where the communication channel between agents is continuous, and thus
differentiable, and where the presence of channel noise makes the agents gravitate
towards discrete communication, as well as a variant where the communication
channel is discrete and non-differentiable. In the continuous setting, we only compute
the listener’s loss and backpropagate this information through the communication
channel to the speaker, while in the discrete setting, we update both the speaker
and listener separately.

Figure 4.2: Trade-off between communication loss and vocabulary size. The
Pareto frontier is estimated using correlation clustering in CIELAB space. We
observe that our agents (the line corresponding to reinforcement learning) are able
to develop a color naming system, from just maximizing reward, that matches the
efficiency of human color naming systems (the line corresponding to WCS). The
Pareto frontier is estimated using correlation clustering. Note, the WCS language
data points is a reproduction from Regier, Kemp, et al. (2015). The error bars
around the red line corresponds to a 95% confidence interval.

In Figure 4.2 we show the efficiency, measured as expected communication loss
vs vocabulary size, of our artificial agents, human systems in the WCS data, and
random agents. The communication loss is measured as the KL-divergence between
the speaker and listener, as by Regier, Kemp, et al. (2015). We observe that
reinforcement learning can replicate the efficiency of human color naming systems
solely by maximizing reward. We also observe that both the artificial agents and
human systems are close to the Pareto frontier and much more efficient compared to



Chapter 4. Summary of included papers 27

Figure 4.3: The top grid is the Munsell chart used to collect the WCS data. The
left column corresponds to human languages with different number of color words
while the right column corresponds to artificial naming systems produced by our
reinforcement learning agents. Each colored line in a grid corresponds to a color
word in the language and the region encapsulated by a word corresponds to the
colors for which this word is used.

a random baseline.
Some of the color maps produced by reinforcement learning are presented in

Figure 4.3 along with human color maps derived from the WCS data. We observe
that reinforcement learning produces color maps that have a fair amount of similarity
to human ones, without ever being exposed to human systems. This result is further
examined in the paper using quantitative approaches.

Beyond the aforementioned results showing that reinforcement learning leads
to efficient color naming systems with some similarities to human systems, we also
explore how the amount of noise in the environment affects the resulting color
language. Our results indicate that there is a strong negative correlation between
environmental noise and the resulting complexity of the produced color naming
system. This can potentially be explained by the fact that there is an implicit
pressure towards simple solutions in our reinforcement learning model. The higher
the noise is, the harder it is for the agents to learn a joint language, and they are
thus more likely to converge to simple solutions where very few color words are used.
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4.2. Paper 2: Learning approximate and exact numeral systems via reinforcement

learning
4.2 Paper 2: Learning approximate and exact nu-

meral systems via reinforcement learning
Xu, Liu, et al. (2020) recently suggested that numeral systems found in human
languages are optimized for efficient communication. In Paper 2 we study how efficient
approximate and exact numeral systems emerge in a signaling game played by two
reinforcement learning agents. Our main contribution is showing that reinforcement
learning leads to efficient numeral systems that are similar to those found in human
language. A motivation for using reinforcement learning in the context of numeral
systems is the work of O’Shaughnessy et al. (2021) which highlights the influence
that social and economic factors have on the emergent numeral system.

3   4   5 6   73   4   5 6   7

“A few”

Figure 4.4: The communication model considered here and also by Xu, Liu, et al.
(2020). The sender wants to convey the numeral concept 4 and utters “a few”.
The listener is unsure of which numeral the sender is referring to and produces a
probability distribution over possible numerals.

In contrast to Kågebäck et al. (2020), we instead consider a bandit approach
with an implicit Thompson sampling scheme (Gal and Ghahramani 2016). Each
agent keeps a neural network that models the expected reward for each number-word
pair pn, wq. At each round of the game, the agents sample a smaller network from
the larger one using dropout (Srivastava et al. 2014). This smaller network is later
used during the next round of the signaling game. Gal and Ghahramani (2016)
showed that this scheme can be viewed as approximate Bayesian inference and we
can thus think of the larger networks as belief distributions that we sample from
using dropout. Figure 4.5 offers a schematic view of our signaling game with this
approach.

In this work, we consider three need distributions inferred from human data and
three different reward functions

rlinearpn, n̂q “ 1 ´
|n ´ n̂|

|N |
,

rinversepn, n̂q “ p1 ` |n ´ n̂|q
´1,

rexppn, n̂q “ e´|n´n̂|.
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Figure 4.5: At each round of the game, the agents sample smaller networks, fS and
fL, and using dropout, i.e. some neurons in the larger networks are ignored with a
certain probability. This can be viewed as sampling from a belief distribution (Gal
and Ghahramani 2016). After this , The speaker is given a number n, drawn form
a need distribution n, and conveys the word with the highest expected reward
according to fs. The listener proceeds in similar fashion, given w it produces the
guess, n̂, that has the highest expected reward according to fL. A shared reward
is given to both agent based on how close n̂ is to n, Th networks are updated by
minimizing the MSE between predicted reward and observed reward.

We do not suggest that humans explicitly optimize any of these reward functions, the
reward functions should merely be thought of as a way to model different amounts
of pressure toward informativeness. That is, the quicker the reward decays in terms
of |n ´ n1|, the more precise must the listener’s reconstruction be to achieve high
reward. This results in a higher bias towards informativeness.

After training the reinforcement learning agents, we estimated whether their
produced numeral system was exact or approximate by estimating the speaker’s
distribution over 1000 rounds of the signaling game. If the speaker, for each n,
assigned more than 0.90 probability mass to a single word w, we interpreted that as
being an exact numeral system, otherwise, we took it to be approximate. Figure 4.6
shows the efficiency of these agents under one of the need distributions considered.
Here, both the convex hulls and efficiency were computed as in Xu, Liu, et al. (2020).
Further, Xu, Liu, et al. (2020) modeled the human approximate systems as Gaussians
while our agents are not restricted to this assumption. This explains why they are
below the Pareto frontier for 2-term approximate systems. We observe that the
reinforcement learning agents have numeral systems close to the Pareto frontier and
populate the same part of the region as the human systems studied by Xu, Liu,
et al. (2020). We further observed that these systems are similar to their human
counterparts, see Figure 4.7.

An important question that is left open in our work is how these approximate
and exact systems evolve into (efficient) recursive numeral systems, like the ones in
English or Swedish. Answering this question would probably require a combination
of neuro-symbolic methods and reinforcement learning.



30 4.3. Paper 3: Pragmatic reasoning in structured signaling games

Artificial (Exact)
Artificial (Approximate)

Human (Exact)
Human (Approximate)

Convex Hull (Exact)
Convex Hull (Gaussian)

2 3 4 5 6 7
Term usage

0

1

2

3

4

5

Co
m

m
un

ica
tio

n 
co

st

Awa Pit Kayardild
!Xoo

Chiquitano

Gooniyandi Munduruku
Piraha

(a) Reward: Linear
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(b) Reward: Inverse

Figure 4.6: Term usage vs communication cost. This plot shows the result when
numbers are drawn according to the need distribution derived by Xu, Liu, et al.
(2020). Note that our agents are not restricted to model the words as Gaussian
distributions and can create other probability distributions. This explains why
the line goes below the convex hull, for 2 terms, which was computed assuming
Gaussian distributions for tractability reasons. Our results for human systems
matches the ones originally reported by Xu, Liu, et al. (2020).
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Figure 4.7: Comparison between the optimal numeral systems w.r.t. communica-
tion cost, human systems and the artificial systems produced by our agents. Each
color represents a numeral word and the corresponding interval on the number
line that the word represents.

4.3 Paper 3: Pragmatic reasoning in structured
signaling games

In Paper 3 we extend our two-agent framework to include agents able to do pragmatic
reasoning (Grice 1975). Here, both the speaker and listener observe a set of meanings,
also known as a context, and the speaker chooses one of these meanings as the target
to communicate to the listener. The language of the agents does not need to be
precise in scenarios where the contextual information helps the listener to decode the
utterance from the speaker. We introduce the notion of a structured signaling game,
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where there is a similarity measure between meanings, and explore how efficient
communication emerges between pragmatic agents in this game in the domain of
colors. We also introduce a version of the Rational Speech Act (RSA) (Frank and
Goodman 2012), tailored for our structured signaling game, that we call structured-
RSA (sRSA). In RSA the speaker and listener reason about each others behavior
using the following recursion

L0pm|wq9Lpm, wq

Stpw|m, Cq9eαUtpm,w,Cq

Ltpm|w, Cq9Stpw|m, Cqppm|Cq

where Utpw, m, Cq is the expected utility, of conveying message w given the meaning
m in the context C, and ppm|Cq is the prior probability of m given C. Here,
Lpm, wq P r0, 1s is a meaning function, or semantic representation, that states to
what extent the meaning m can be described by the utterance w. We can think if
this function as the lexicon of the agents. In our sRSA, the utility function is defined

Meaning Function: Culina (Peru)

𝑅𝑆𝐴(∞, 5) 𝑠𝑅𝑆𝐴(∞, 5)

a)

c) d)

b)
Similarity Matrix

Speaker Listener

Figure 4.8: An example of a structured signaling game in the color domain. a)
Shows the meaning function of the agents derived from the language Culina found
in the WCS. b) The similarity matrix between the colors. c) The limit point of
RSA as t Ñ 8 d) The limit point of sRSA, as t Ñ 8. Since RSA minimizes only
the surprisal of the listener and does not account for the similarity structure we
observe that the lighter blue color and green color are mapped to the same word.
Unlike RSA, the sRSA takes the similarity matrix into account and converges to
a solution where the first 3 colors can be uniquely determined, while the last 3,
all variants of blue, are mapped to the same word.

as the similarity-sensitive surprisal (Leinster 2021) of the listener, L,

Utpw, m, Cq “ ´ log
ÿ

m1

Zmm1Lt´1pm1
|w, Cq

where Zmm1 is a similarity measure between the target meaning and some other
meaning m1 in the context. This measure captures the desirable property that a
listener shouldn’t be as surprised if a speaker uses the same word for two similar
meanings compared to if the speaker used the same word for two very different
meanings. Recall that the standard RSA uses the classical surprisal Utpw, m, Cq “
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log Lt´1pm|w, Cq which doesn’t explicitly account for the structure in the context.
Figure 4.8 shows how RSA and sRSA produces different behavior in the case of
colors.
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Figure 4.9: The complexity and accuracy of the sRSA agents increase with
recursion depth, while the complexity and accuracy of the corresponding meaning
functions decrease. Hence, as the reasoning depth increases, the ambiguity of the
learned meaning function increases. Depth indicates the level of the final listener
in the recursion, and the error bars correspond to the width of the 95% confidence
interval.

In the paper, we show that pragmatic agents with semantic representations
derived from the WCS data attain efficiency close to the information-theoretic limit
after only 1 or 2 levels of recursion. We also show that reinforcement learning agents
equipped with sRSA develop highly efficient representations. Especially, our results
indicate that as the reasoning power of the agents increases i.e., the number of
recursions in sRSA increases, the emergent semantic representation becomes more
ambiguous, see Figure 4.9. Hence, our pragmatic agents seem to obey principles of
least effort (Zipf 1949). If the agents can perform deep and contextual reasoning
there is no need to develop a very precise lexicon. On the other hand, if the agents
cannot reason about how the context influences the meaning of an utterance, the
resulting lexicon has the be very precise to support efficient communication. These
results suggest that there might be an additional trade-off, than the one between
informativeness and complexity, between different notions of complexity. Namely,
a trade-off between semantic complexity (the complexity of the meaning function)
and reasoning complexity (recursion depth) which might be interesting to explore in
future work.
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4.4 Paper 4: Cultural evolution via iterated learn-
ing and communication explains efficient color
naming systems

In Paper 4 we consider efficiency using the Information Bottleneck (IB) princi-
ple (Tishby et al. 1999; Zaslavsky et al. 2018), and a model of cultural evolution
that combines iterated learning and communication (Kirby, Tamariz, et al. 2015).
We show that this model converges to color naming systems that are efficient in the
IB sense and similar to human systems. We show that some other proposals, such
as iterated learning alone, communication alone (like the model in Paper 1), or the
greater learnability of convex categories, do not yield the same outcome as clearly.
We also highlight the importance of an evolutionary process that leads to human-like
and efficient systems, since there exists a large set of color naming systems that are
highly efficient in the IB sense but not similar to any human systems, see Figure 4.10.

(a)

WCS RM (similar) RM (dissimilar)

(b)

Figure 4.10: a) Efficiency of color naming, following Zaslavsky et al., 2018. The
color naming systems of the WCS are shown in blue, replicating the findings of
Zaslavsky et al., 2018. We introduce a simple Gaussian random model, shown in
orange, that generates highly efficient color naming systems. It can be seen that
the RM systems are often closer to the IB curve than the WCS systems are. The
inset shows the 9 color systems in b), with the dissimilar random systems shown
as + . b) The left column contains color naming systems from 3 languages in the
WCS. Colored regions indicate category extensions, and the color code used for
each category is the mean of that category in CIELAB color space. The named
color categories are distributions, and for each category we highlight the level
sets between 0.75 ´ 1.0 (unfaded area) and 0.3 ´ 0.75 (faded area). The middle
and right columns contain randomly-generated systems of complexity comparable
to that of the WCS system in the same row. The middle column shows random
systems that are similar to the WCS system in the same row while the right
column shows random systems that are dissimilar to any WCS system.

Our evolutionary model is based on the NIL algorithm (Ren et al. 2020) which
alternates between a communicative phase, where agents within a generation interact
with each other, and a learning phase, where a new generation learns from the
previous generation. Here the learning phase is done by training, using supervised
learning, the new generation on data generated from the previous generation. The
communication is the same signaling game as Kågebäck et al. (2020) and the agents
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efficient color naming systems
are updated using reinforcement learning. For more details about the algorithm and
various hyperparameters, see the full paper.

In Figure 4.11 we show the efficiency of the color naming systems that emerge
during learning and communication (IL+C), as well as the efficiency of the systems
that emerge under learning only (L) and communication1 only (C). We observe that
IL+C produces efficient systems that all end up in the same region as the WCS, even
though the agents could in principle produce more complex systems. We also observe
that just learning is skewed towards less complex systems than observed in human
languages, which is in line with the claims of Carr et al. (2020) that iterated learning
induces a bias towards simplicity. On the other end, we see that just communication
results in naming systems more complex than what is observed in human systems. To
conclude, iterated learning with intra generation communication provides a balance
between these forces that corresponds well with what is observed in human color
naming systems.

Figure 4.11: Efficiency of the (top) IL+C, (bottom left) IL, and (bottom right)
C evolved color naming systems (orange dots), in each case compared with the
natural systems of the WCS (blue dots). The black triangle indicates the end
state of one run, shown in the inset color map. The histograms above each figure
indicate the proportion of systems at the corresponding complexity level.

1Note that this is exactly the model in Paper 1, evaluated in the IB framework.
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However, as highlighted in Figure 4.10, efficiency does not equal human-like
systems. In the paper, we both qualitatively and quantitatively show that IL+C
leads to both human-like and efficient systems. For example, Figure 4.12 shows an
experiment where we initialized the first generation with a color naming language,
generated by our random model, that was efficient but dissimilar to any human
systems. We observe that IL+C transforms already efficient systems to become
more similar to human systems. In the paper, we further explore what types of

Before NIL After NIL WCS

Figure 4.12: IL+C transforms efficient color naming systems to become more
similar to the WCS. In each row, the left column shows a randomly generated
efficient system that was used to initialize the first generation, the middle column
shows the result of running NIL from that initialization state, and the right column
shows a WCS system.

systems are produced by the model and connect our results to ideas regarding
learnability (Steinert-Threlkeld and Szymanik 2020) and convexity of semantic
categories (Gärdenfors 2000).
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4.5 Paper 5: Thompson sampling in bandits with
clustered arms

In Paper 5, we study a version of the multi-armed bandit problems where the learner
has been given a pre-defined clustering of the arms. This could either be a disjoint
clustering or a hierarchical clustering of the arms. One motivating example for this
model is recommender systems where a user may have strong preferences for certain
categories. Our main contribution is proposing a multi-level Thompson sampling
algorithm (TSC) for the stochastic multi-armed bandit with clustered arms (MABC),
see Algorithm 7, and for a contextual version of the problem, where the expected
reward of each arm is linear in the context vector.

Algorithm 7 TSC
Require: A, K

Set S1 “ F1 “ 1 for all a and C.
for t “ 1..., T do

For each cluster C sample θC „ BetapStpCq, FtpCqq and pick Ct “ arg maxCPK θC

For each a P Ct sample θa „ BetapStpaq, Ftpaqq.
Play arm at “ arg maxaPCt

θa and collect reward rt.
Update St`1patq “ Stpatq ` rt , Ft`1patq “ Ftpatq ` p1 ´ rtq.
Update St`1pCtq “ StpCtq ` rt and Ft`1pCtq “ FtpCtq ` p1 ´ rtq.

end for

For the MABC, we provide a regret bound for our algorithm under the assumption
that the clusters are well-separated in terms of reward. We show an instance-
dependent regret bound, that scales with the gap between sub-optimal clusters and
the cluster containing the optimal arm, as well as the gaps between arms in the
optimal cluster, informally stated below

ErRegretT s ď

˜

ÿ

C‰C˚

∆C

KLpµC ||µ
C˚q

`
ÿ

aPC˚

∆a

KLpµa||µ˚q

¸

log T ` oplog T q.

Here, µC is the largest achievable expected reward in cluster C, C˚ denotes the
cluster containing the optimal arm, µ

C˚ the smallest expected reward for any arm in
the optimal cluster, and µ˚ the optimal reward. ∆a is the regret suffered by playing
arm a and ∆C is the regret suffered from playing the arm with the highest reward in
cluster C.

We do also prove an instance-independent regret bound on the form

Õ
´

a

A˚ ` Kp1 ` γqT
¯

(4.5.1)

where A˚ is the number of arms in the same cluster as the optimal arm, K is the
number of clusters, and γ a parameter that measures the quality of the clustering
(lower is better), see the paper for more details. Here Õp.q hides logarithmic factors.
Recall that standard bandit algorithms have a regret scaling as Õ

`?
NT

˘

where
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Figure 4.13: An instance with 1000 arms, 32 clusters and 32 arms in each
cluster. TSC is our approach. TS (Thompson sampling) and UCB (upper
confidence bounds) are algorithms suited for the standard multi-armed bandit.
UCBC (Pandey et al. 2007; Bouneffouf et al. 2019) and TSMax (Zhao et al.
2019) are previously suggested algorithms for the MABC. We observe that TSC
outperforms all algorithms. The cumulative regret is averaged over 50 random
seeds and the error bars corresponds to ˘ the standard deviation.

N is the total number of arms. Thus, our bounds suggest that our TSC algorithm
should improve over classical approaches when either there are few clusters, small
K, or when the optimal arm belongs to a cluster containing few arms (small A˚).
Since A˚ is not a priori known, the bound in (4.5.1) suggests that our algorithm
reaps the most benefit over standard approaches when K “

?
N and each cluster

contains
?

N arms. In addition, our empirical evaluation shows that our approach
has an advantage over both classical approaches and other algorithms introduced for
the MABC, see Figure 4.13. or more empirical results see the paper. In the paper
we also provide regret bounds for hierarchical clusterings as well as an extensive
empirical evaluation of the contextual version of TSC.
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4.6 Paper 6: Pure exploration in bandits with
linear constraints

The best-arm identification (BAI) in the bandit framework has many applications
such as hyper-parameter tuning (Li, Jamieson, et al. 2017) and clinical trials (Aziz
et al. 2021). However, in practice, many decision-making problems involve constraints
on the available actions that need to be satisfied. For clinical trials, this could be
certain safety constraints w.r.t. toxicity or in a recommender system one might have
constraints that require a certain level of diversity in the recommendations. As a
result, standard BAI algorithms are not perfectly appropriate for these settings since
the constraints might force the learner to output a stochastic policy instead of one
best arm, see the example in Figure 4.14.

Person B

Calories 600 400 200 ≥ 400

Protein 30 0 10 ≥ 20

Person A

Calories 600 400 200 ≥ 400

(1, 0, 0)
Simplex

(0, 1, 0)

(0, 0, 1)

(0, 1, 0)

(1, 0, 0) (1/2, 0, 1/2)

(2/3, 1/3, 0)

(1, 0, 0) (1/2, 0, 1/2)

Expected Reward 𝝁 = [3, 2, 4] Preference Direction:

𝜋∗ 𝜋∗ 𝜋∗

Person A Person B

𝑏"

𝑏#
𝑏$

Figure 4.14: Two people, A and B, are searching for a meal plan π that maximizes
taste, i.e., expected reward µJπ, while satisfying some nutrition constraints.
Without any constraints this setting reduces to BAI and can be viewed as searching
for the optimal policy over the probability simplex. However, the nutrition
constraints alter the set of feasible sets and a person might have to mix between
several dishes to satisfy the constraints while maximizing the reward. The red
arrow indicates the preference direction and the red dot corresponds to the
optimal policy for each case. The dotted arrows, bi, corresponds to the normal
of that boundary, i.e. the constraint causing the boundary, and as we will see
later, in Figure 4.15, the distance between µ and bi controls the hardness of the
problem. For person A, the distance between b2 and µ decreases compared to
the unconstrained case, while it increases for person B. Thus, the problem of
finding the optimal pure exploration policy gets easier for person B while harder
for person A. This is quantified by the minimum number of samples required to
identify the optimal policies for person A, B, and the unconstrained case, see
Figure 4.15.

In Paper 6 we study the problem of finding the best option when arms are subject
to a set of linear constraints. We consider this problem in the fixed confidence regime
where the goal is, with as few collected samples as possible, to output the optimal
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solution π˚ to the following problem

arg max
πPF

πJµ (4.6.1)

with probability at least 1 ´ δ for some given δ P p0, 1q. Here, µ P RK is the unknown
reward vector where an entry µi corresponds to the expected reward of arm i P rKs

and F is the set of policies that satisfy our constraints. Thus, our goal is to query
entries of µ until we can output the optimal solution to (4.6.1) with probability 1 ´ δ.
We further assume that the noise in the observations follows some sub-Gaussian
distribution.

𝜆∗ = arg min
"∈$(&)

∑𝑤(𝑑(𝜇(, 𝜆()

𝜇 𝜆)∗ 𝜆*∗
𝜆+∗

A B𝑏!𝑏"𝑏#

Figure 4.15: Computing the λ satisfying Equation 4.6.3, i.e. the most confusing
instance, can be viewed as an information-theoretic projection onto the boundary
of the normal cone spanned by the active constraints at πµ. In A) we see the
different normal cones for the three different examples in Figure 4.14. In B) we
have fixed µ1 and µ3, as in Figure 4.14, and plot the lower bound, assuming
Np0, 1q noise and with δ “ 0.1, for increasing µ2 which mean that we are moving
µ closer to the boundaries in A). We observe an inverse relationship between the
distance to the boundary and the lower bound, properly characterized in Paper 6.

Recall, from Section 2.4, that lower bounds in multi-armed bandits can be written
on the form

Eµ,ϕ rτδs ě TFpµq log 1
2.4δ

where TF is the solution to a zero-sum game between a learner, that samples arms
according to w, and an adversary that outputs a confusing instance λ where the
optimal policy is different form the one under µ 2

T ´1
F pµq “ sup

w
inf

λPΛF pµq

K
ÿ

a“1
waKLpµa, λaq (4.6.2)

here ΛFpµq is the set of alternative instances

ΛFpµq “ tλ P RK : max
πPF

λJπ ą λJπ˚
u.

2Here, KLpµa, λaq “ KLpµa, ||λaq and the different notation, compared to Chapter 2, is due to
the notion KLp., .q being used in Paper 6.
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One of our contributions is to show that the lower bound in the constraint setting
depends on a non-convex projection onto the boundary normal cone spanned by
the active constraints at the optimal policy, see Figure 4.15. Especially, given an
allocation w, the adversary will output a problem instance that satisfies

min
λ:λPBN pπ˚q

K
ÿ

a“1
waKLpµa, λaq. (4.6.3)

Here, BN pπ˚q denotes the boundary of the normal cone spanned by the active
constraints at the optimal policy. A formal version of this result, with an explicit
expression of the boundary of the cone, is given in Lemma 3.1 in the main paper. We
also leverage properties of set-valued functions to show that this projection satisfies
certain continuity properties in w and µ, which in turn enables us to compute it with
standard optimization techniques.

The lower bound in (4.6.2) is implicit and doesn’t reveal how the hardness of the
problem depends on the constraints and the reward vector µ. We address this in the
paper by deriving more explicit lower bounds for Gaussian reward distributions.
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Figure 4.16: Y-axis corresponds to the time (number of samples) until an algorithm
stops and outputs the best policy with confidence 1 ´ δ. The figure illustrates
the sample complexity of our algorithms (CTnS and CGE) against baselines
on a problem where to goal is to find the optimal allocation of movies, w.r.t.
genre constraints, in the IMDB dataset. For each algorithm, we performed the
experiments over 1000 different random seeds.

On the algorithmic side, we introduce two algorithms, CTnS and CGE, which
are adaptations of standard BAI algorithms, to the constraint setting. We prove
that both these algorithms are asymptotically optimal in δ. That is, their expected
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sample complexity τ satisfy

lim sup
δÑ0

Erτ s{ log 1
δ

ď TF .

Our empirical evaluation shows that our algorithms have an advantage over
baselines. In Figure 4.16 we show the performance of our algorithms against three
baselines: optimal, uniform, and a version of TnS (Kaufmann et al. 2016) that
projects the exploration policy onto the feasible set. Note that the optimal baseline
is not possible in practice since it samples from the w given by (4.6.2) which requires
knowledge of the true rewards µ. We observe that our algorithms operate close
to the lower bound even for moderately large δ and their performance is on par
with the optimal sampling policy. Since publishing this paper, other works have
extended this setting to the fixed-budget regime (Tang et al. 2024) and unknown
constraints (Gangrade et al. 2024; Das and Basu 2024).
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4.7 Paper 7: Active preference learning for order-
ing items

In Paper 7, we study the problem of ordering a set of items, I, using active preference
learning. In our model, each item, i P I, is associated with a known feature vector
xi P Rd and an unknown score yi P R. Our goal is to order the items based on their
score.

We assume that we can request a comparison of any two items, i, j P I, and
receive a noisy binary preference c „ ppCijq. We further assume that the unknown
scores satisfy a linear model,

yi “ θJ
˚ xi,

for some unknown θ˚ P Rd, and that the noisy preference feedback follows a logistic
model

ppCijq “ σ pyi ´ yjq ,

where σp.q is the sigmoid function. Hence, to order the items in I we need to estimate
θ˚ sufficiently well in the direction of the feature vectors txiuiPI . This type of model
has applications in medical imaging (Phelps et al. 2015; Jang et al. 2022; Lidén et al.
2024) as well as in reinforcement learning with human feedback (RLHF) (Ouyang
et al. 2022; Das, Chakraborty, et al. 2024).

Our main contributions consist of deriving a data-dependent upper bound for
the ordering error after T noisy comparisons, followed by two sampling strategies
that, greedily, try to minimize this upper bound.

Let the ordering error of an estimate θT be defined as

RpθT q :“ 2
npn ´ 1q

ÿ

i‰jPI
1rsgn

`

θJ
T zij

˘

‰ sgn
`

θJ
˚ zij

˘

s

where zij :“ xi ´ xj. Our data-dependent bound suggests that the probability that
the ordering error exceeds some ϵ ą 0 after collecting a dataset, DT , of T comparisons
is upper bounded as 3

P pRpθT q ě ϵq Æ
4dT

ϵ
exp

„

´∆2T {pmax
i,j

9σpzJ
ijθT q

2
}zij}

2
H̃´1

T pθT q
q

ȷ

. (4.7.1)

Here, ∆ “ mini‰j ∆ij{|i ´ j| where ∆ij is difference in score between any i, j, HT pθT q

is the Hessian of the negative log-likelihood around our estimated parameter θT

HT pθT q :“
T
ÿ

t“1
9σpzJ

it,jt
θqzit,jtz

J
it,jt

,

3To ease the presentation, we have ignored second-order terms here. See Theorem 4.2 in the
paper for a precise upper bound.
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Figure 4.17: X-RayAge. Performance of active sampling strategies when com-
parisons are simulated using a logistic model. In-sample Kendall’s Tau distance
(ordering error) RID

on 200 images (left) and generalization error RIE
´ RID

for models trained on 150 images and evaluated on 150 images from a different
distribution (right). All results are averaged over 100 different random seeds.

and }zij}H̃´1
T pθT q “

b

zJ
ijHT pθT q´1zij. The bound in (4.7.1) holds true for any sam-

pling strategy and depends on the collected data through the estimated parameter θT

as well as the Hessian HT pθT q, which is also known as the observed Fisher informa-
tion. In short, the bound suggest that a good active learning strategy should collect
data such that the quantity maxi,j 9σpzJ

ijθT q}zij}H̃´1
T pθT q is minimized, as this would

minimize our upper bound on the probability of error. Note that the variance in a
noisy comparison between two items, i, j, under the predicted model θT , is equal to
the derivative 9σpzJ

ijθT q2 while }zij}2
H̃´1

T pθT q
is a measure of model uncertainty. Thus,

(4.7.1) suggests that high model certainty is needed in directions with high variance.
In the paper, we leverage these theoretical insights and introduce the active

learning algorithm GURO, short for Greedy Uncertainty Reduction for Ordering,
which at every time t query a pair of items that satisfy

max
i,j

9σpzJ
ijθtq}zij}H̃´1

T pθtq.

Here θt is the maximum-likelihood estimate given the samples seen so far. In the
paper, we also present a Bayesian version of GURO, named BayesGURO, that can
incorporate prior beliefs about the underlying environment.

In Section 6 of Paper 7, we compare our proposed algorithms against various
baselines in both synthetic experiments as well as experiments that build on real
preference feedback from human annotators. Our results indicate that our algorithms
have an advantage over baselines. In Figure 4.17 we present one of our experiments
where the goal is to order a set of X-ray images according to patient age. Here,
the feature vectors txiuiPI were extracted by passing the X-ray images through a
pre-trained CNN, and the unknown scores are the age of the patients. We observe
that our algorithms outperform both uniform sampling as well as two other active
learning algorithms, BALD (Houlsby et al. 2011) and CoLSTIM (Bengs et al. 2022).





Chapter 5

Concluding remarks and future
directions

In this thesis, we have used reinforcement learning and multi-armed bandits to
explore several aspects of sequential decision-making under uncertainty and how
these decisions might gradually shape the behavior of the agents. We have shown
that reinforcement learning agents, communicating with each other in a collaborative
setting, eventually develop a shared language. The resulting artificial languages are
efficient in an information-theoretic sense, an important property of human languages.
Recent works have argued that a combination of a pressure for informativeness, coming
from the need to solve communicative tasks, and a pressure for simplicity, stemming
from learning, accounts for the efficiency found in human languages (Kirby, Tamariz,
et al. 2015; Carr et al. 2020) and our results support these arguments. This is
because our reinforcement learning agents have a clear bias towards informativeness,
induced by their goal to maximize the joint reward, while they also have a bias
towards simplicity due to the fact that they need to learn and converge on a joint
language. In addition, one of our key results in this line of work was showing that
a combination of reinforcement learning and iterated learning accounts for efficient
color naming systems found in human languages. In this model, iterated learning
reinforces the simplicity bias and our results suggest that this model account better
for the data, compared to either reinforcement learning alone or iterated learning
alone.

We have also explored how theoretical insights can be used to derive more sample
efficient algorithms for multi-armed bandit problems. This has resulted in sample
efficient algorithms for the multi-armed bandit problem with clustered arms, as well
as provably optimal algorithms for the problem of identifying an optimal policy that
is subject to pre-defined constraints. In Paper 7, we used theoretical results from
multi-armed bandits to derive algorithms for active preference learning and showed
that these outperform baselines.

45
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5.1 Future directions
An interesting future direction is to explore whether the combination of reinforcement
learning and iterated learning, used in Paper 4 , can account for efficient communica-
tion in other domains where human languages have been shown to support efficient
communication. This is important because the notion of efficiency is not always
sufficient to account for naming systems found in human languages and additional
constraints might be induced by an evolutionary process.

Recent works have explored the learnability of various semantic universals by
applying off-the-shelf machine learning methods and studying how rapidly these
learn certain properties (Steinert-Threlkeld and Szymanik 2020; Douven 2023). A
key finding is that many of the universals found in human languages, such like color
words being convex regions in the color space (Gärdenfors 2000; Jäger 2010), are
easier to learn for machine learning models. A limitation of these works is that
they study learnability trough the lens of just one particular learning algorithm.
Here, we think an interesting direction would be to borrow from the vast amount
of theoretical results regarding sample complexity that is found in the multi-armed
bandit literature. These results can potentially be used to study learnability for a
whole class of learning algorithms simultaneously. To give an example, an interesting
future direction is to use tools from the bandit literature, like the lower bound
result described in Section 2.4, to compute lower bounds on the sample complexity
of certain semantic universals. These lower bounds might give an indication for
how hard certain properties are to learn for a whole family of algorithms and thus
complement the already existing works on semantic universals and learnability.

Another important direction is to extend the work in Paper 2 to recursive numeral
systems. Some work has already been done in this direction using either a single
agent setup (Thomas, Silvi, et al. 2024) or iterated learning (Guo, Ren, et al. 2020).
What is currently unknown is whether efficient recursive systems can emerge in a
cooperative multi-agent setting, like the ones considered in this thesis, and whether a
single model can learn approximate, exact restricted, and recursive numeral systems.
The latter is interesting because such a model would account for how a numeral
system evolves from one type of system to another. A potential approach is to
combine iterated learning with some (neuro) symbolic mechanism. In such a model,
one would expect that the presence of a communicative task dictates what type of
system emerges. If the task requires a very precise communication of numbers over
a large range, a recursive system should emerges, while a lower pressure towards
informativeness might lead to approximate or exact restricted systems.

A limitation of our work is the one-way communication between the speaker and
listener. In practice, agents are able to communicate back and forth with each other,
and exploring how this impacts the efficiency of the communication is an important
future direction.

When it comes to sample efficient algorithms in multi-armed bandits, an important
direction is to extend the work done in Paper 6 to the case with a priori unknown
constraints. Another interesting direction is extending the algorithms introduced in
Paper 7 to be able to handle preferences along several dimensions at the same time.
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Abstract
We present a multi-agent computational approach to partitioning semantic spaces
using reinforcement-learning (RL). Two agents communicate using a finite linguistic
vocabulary in order to convey a concept. This is tested in the color domain, and
a natural reinforcement learning mechanism is shown to converge to a scheme
that achieves a near-optimal trade-off of simplicity versus communication efficiency.
Results are presented both on the communication efficiency as well as on analyses
of the resulting partitions of the color space. The effect of varying environmental
factors such as noise is also studied. These results suggest that RL offers a powerful
and flexible computational framework that can contribute to the development of
communication schemes for color names that are near-optimal in an information-
theoretic sense and may shape color-naming systems across languages. Our approach
is not specific to color and can be used to explore cross-language variation in other
semantic domains. 1

1 Introduction
The study of word meanings across languages has traditionally served as an arena for
exploring which categorical groupings of fine grained meanings tend to recur across
languages, and which do not, and for deriving on that basis a set of generalizations
governing cross-language semantic variation in a given domain.

There is a long history of proposals that attempt to characterize how humans
manage the effort of communication and understanding (Zipf 1949) and how this
management can be affected by environmental demands (Baddeley and Attewell
2009). One such increasingly influential proposal is that language is shaped by the
need for efficient communication (Kemp et al. 2018; Regier, Kemp, et al. 2015;
Gibson et al. 2017; Piantadosi et al. 2011; Jameson and D’Andrade 1997), which
by its nature involves a trade-off (Kirby et al. 2015; Carr et al. under review 2018)
between simplicity, which minimizes cognitive load, and informativeness which
maximizes communication effectiveness. Specifically, they propose that good systems
of categories have a near-optimal trade-off between these constraints. This trade-off
is couched in the classic setting of Shannon information theory (Cover and Thomas
2006) which considers the fundamental laws of transmitting information over a noisy

1Code available at: https://github.com/kageback/colorwords
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channel. Examples formalized in information-theoretic terms include suggestions that
word frequency distributions, syllable durations, word lengths, syntactic structures,
and case marking all facilitate efficient communication (see (Kemp et al. 2018; Regier,
Kemp, et al. 2015) and references cited therein). The information theoretic view
leads naturally to view the symbolic linguistic terms used for the communication as
codes that create partitions of semantic spaces.

Given the principle of efficient communication, a fundamental challenge is to
seek a concrete computational mechanism that could lead to optimal or near op-
timal communication schemes. Here we propose Reinforcement learning (RL) as
a potential computational mechanism that may contribute to the development of
efficient communication systems. Various systems, both artificial and in nature, can
be represented in terms of the way they learn environmental interaction strategies
that are near-optimal using RL techniques that employ reward/punishment schemas
(Sutton and Barto 1998; Wiering and Otterlo 2012; Dayan and Niv 2008). RL’s
basis in operations research and mathematical psychology and ability to provide
quantitative and qualitative models means it can be applied to a wide range of
areas(Dayan and Niv 2008).

RL appears to be transparently implemented in neural mechanisms, for example,
in dopamine neuron activity. For this reason, RL is increasingly recognized as
having scientific value beyond mere computational modeling of decision-making
processes (Dayan and Niv 2008; Niv 2009; Niv and Langdon 2016). That RL
appears to be biologically so well-embedded implies that it can be seen as a general
cognitive mechanism and used in an immediate way to make hypotheses about and
interpretations of a variety of data collected in behavioral and neuroscientific studies.

The availability of a growing suite of environments (from simulated robots to
Atari games), toolkits, and sites for comparing and reproducing results about RL
algorithms applied to a variety of tasks (Lazaridou et al. 2016; Foerster et al. 2016;
Havrylov and Titov 2017; Evtimova et al. 2017; Jorge et al. 2016) makes it possible
to study cognitive science questions through a different lens using RL. Cognitive
science experiments are often carried out in real life settings involving questionnaires
and surveys that are costly and sometimes suffer from high variability in responses. If
simple RL algorithms are indeed a good proxy for actual human learning, then insights
about questions of universals in language learning could be obtained very cheaply
and reliably via controlled experiments in such in silico settings. Our approach
could be used to explore various trade-offs at the heart of efficient communication
(Kemp et al. 2018). Some languages are simple i.e. have few color terms while others
have more color terms and are hence more informative. There is a tradeoff between
these two properties and our framework can be used to test the prediction that
human semantic systems will tend to lie along or near the optimal frontier of the
region of achievable efficiency in communication systems as depicted schematically
in Figure 1.1, see also (Kemp et al. 2018; Carr 2019) for more discussion on this.
Representing the question as an accuracy vs. complexity tradeoff specific to the
domain of color terms, Zaslavsky et al. (Zaslavsky et al. 2018) demonstrate that a
number of human languages, English included, come very close to that frontier. As
pointed out by a referee, it is interesting to compare the approach here to Zaslavksy
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et al (Zaslavsky et al. 2018) who derive efficient naming systems as solutions to a
differential equation implied by an information bottleneck (IB) loss function with
terms to maximize information transfer and minimize lexicon complexity (which
works out to, essentially, lexicon size). In contrast, this work considers a setting
where two RL agents communicate through a noisy channel about color tiles, also
observed through a noisy channel, and have to eventually agree on a communication
protocol. The RL agents’ reward function is based on a similarity function in
CIELAB space. We show that the resulting communication protocols satisfy the
same efficiency measures that were used to define the information bottleneck, although
the system was not explicitly optimized for these quantities. The environmental and
communication noise rate ends up playing a similar role to the complexity penalty in
the IB formulation (although with different dynamics over time), by reducing lexicon
size. Thus, the two approaches are complementary: while the IB principle offers a
descriptive analysis and establishes fundamental information–theoretic limits on the
efficiency and complexity of communication schemes our approach is an algorithmic
prescriptive route to how such optimal or near optimal schemes could be obtained.

While there may be reason to think that RL has a deep biological basis, in this
work, we do not focus on the specifics of the underlying neurocognitive mechanism.
Rather we demonstrate that very simple RL mechanisms are able to generate
partitions for efficient (and near optimal) communication. We demonstrate this with
a focus on questions about the universality of color categories and words in language.
While there has been previous work (Baronchelli et al. 2010) on computational
mechanisms involving naming games for the emergence of universality of color names,
our work is the first to provide a mechanism based on a fundamental machine learning
paradigm (reinforcement learning) that is also biologically plausible.

1.1 Linguistic background on color identification
A theory of universals Color naming universals have a long history in linguistic
research (Berlin and Kay 1969). At an individual level, color perception is subjective;
it differs for biological reasons across individuals (extreme examples being colorblind-
ness and tetrachromacy). There are commonly-observed differences in individual
color-naming choices. What is “turquoise” to one person may be a variant of “blue”
to another. Nevertheless, within the same linguistic milieu, there is overall agreement
as to color-naming; most English-speaking people recognize the typical supermarket
tomato as “red”.

Berlin and Kay showed across a survey of 20 languages that there are strong
consistencies in color naming and produced a set of universals: e.g., there are a
maximum of eleven major color categories and, where fewer than eleven are realized
for a given language, there is a standard pattern of emergence. This work came
under methodological criticism (Lucy 1997; Saunders 1995), particularly the use of
standardized color systems to abstract away from the interactional and cultural basis
of color identification.

Given this methodological conflict, is it really the case that such universals
are artifacts of methods of investigation that take color communication out of its
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Figure 1.1: Human semantic systems will tend to lie along this optimal frontier of
achievable efficiency in communication systems. Reprinted with permission from
(Carr 2019).

natural context in human linguistic interaction? Accounting for patterns of wide but
constrained variation that have been observed empirically is a central challenge in
understanding why languages have the particular forms they do.

Color terms represent a limited semantic domain with easily manipulated pa-
rameters. By gradual changes of color value, an experimenter can manipulate red
into orange, unlike other semantic domains, where the distinctions between potential
referents (e.g., “car” vs. “truck”) are not easily captured in explicit terms. In
addition, recent work (Regier, Kemp, et al. 2015; Gibson et al. 2017) argues that
color categories in language should support efficient communication.

Color naming models Developed in 1905, the Munsell color system uses three
color dimensions (hue, value, and chroma) to represent colors based on an “equidis-
tance” metric calibrated experimentally by Albert Munsell. The World Color Survey
(WCS; e.g. figure 1.2) uses the Munsell color system in a matrix arranged by 40
hues, 8 values (lightness), and at maximum chroma (saturation). A color map can
be developed for a particular language by asking speakers of that language to name
each color. Color identification boundaries can be compared across languages using
the WCS mapping.

The WCS color map technique enables the testing of automatic systems to
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Didinga

Kalam

Kriol

Podopa

Figure 1.2: Reproduced color mode maps (Regier, Kemp, et al. 2015) corresponding
to four randomly selected languages of the WCS.

partition colors. Regier et al. (Regier, Kay, et al. 2007) experiment with partitioning
the color space using a distance metric as a clustering criterion. They find a good
distance metric by translating the WCS color map to the CIELAB space. CIELAB
enables the translation of the WCS colors to a three-dimensional space, wherein
the WCS colors appear to take an irregular spherical form. Regier et al. then
use a standard "well–formedness" metric, which is essentially placing similar colors
together and dissimilar apart. (Technically, this is called correlation clustering, which
we explain later in the paper.) This allows them to automatically construct color
partitions in the CIELAB space. Regier et al. find correspondences between optimal
color partitions and observed color maps from human surveys as well as determine
that rotating the WCS color space for a given observed color map causes reduced
well–formedness in the corresponding CIELAB space. This is preliminary evidence
for the optimality of color spaces in human language in relation to a well–formedness
trade-off statistic.
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Following their earlier work, Regier et al. adopt an information-theoretic approach
(Regier, Kemp, et al. 2015) by introducing a communication system between two
agents for multiple semantic domains (including color) and the corresponding notion
of reconstruction error as the relative entropy (Kullback-Leibler divergence). The
relative entropy is computed between the speaker’s model and the listener’s model
of the probability that a particular term encodes a particular color. This becomes
the communication cost of a color labeling system. They then show that real-world
color-naming systems not only tend to have high well–formedness, but they also have
low communication cost. A similar framework is adopted by Gibson et al. (Gibson
et al. 2017).

1.2 Approach and contributions

This work focuses specifically on the role of speaker-listener communication efficiency
in the partitioning of color spaces. To this end, we set up a two-agent paradigm
closely mirroring the information-theoretic frameworks (Kemp et al. 2018; Regier,
Kemp, et al. 2015; Gibson et al. 2017) that represent a series of negotiations between
speaker and listener in the context of a “game”. Agent-based simulations are widely
used in the study of the development of communication systems, including color
communication (Steels and Belpaeme 2005; Belpaeme and Bleys 2005; Baronchelli
et al. 2010; Jäger and Rooij 2007). The basic paradigm used in our work is one in
which the speaker and listener both begin with a set of available words (represented
as integer identifiers) associated with a map of color “tiles”, where regions on the map
are represented by the words. However, the speaker and the listener have different
randomly-initialized maps. The speaker agent chooses a color tile and sends the
listener agent the word that represents the region in which the tile is located. The
listener agent then selects a tile that is in the region from its own map that most
likely to be represented by that word in the speaker map. A reinforcement learning
paradigm is used, as above, to update the parameters representing the shape of the
maps, so that the game is run over many iterations.

This approach is a highly constrained representation of the “real-world” scenario of
many speakers negotiating meaning in a speech community. Constrained simulations
of communicative phenomena can allow the identification of plausible hypotheses
about the factors that affect the corresponding real-world scenario, assuming that at
least part of the expected behavior is reflected in the simulation.

In this work, we find that our two-agent simulation closely tracks the behavior of
the languages in the World Color Survey in terms of both communication efficiency
and perceptual well–formedness, relative to the number of primary color terms
used. These are clearly separable from a random baseline and an idealized color
map based on the CIELAB color space. Furthermore, the similarity of the color
maps derived from the two-agent setting to the WCS maps remains relatively stable
as the number of words are varied. We vary other metrics, such as perceptual
and communication noise, to make predictions about color term convergence and
demonstrate the flexibility of the model. The naturalness and stability of the
model are evidence that our agent simulation paradigm is a suitable setting for
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investigation and hypothesis generation about cognitive and environmental effects
on color communication in linguistic settings.

Enabled by recent advances in deep reinforcement learning (Lazaridou et al.
2016; Havrylov and Titov 2017; Evtimova et al. 2017; Jorge et al. 2016), this work
therefore makes a methodological contribution to the study of the development of
meaning in human languages given communicative factors. Our approach can offer
complementary insight to the recent approach of Zaslavsky et al. (Zaslavsky et al.
2018) who argued that languages efficiently compress ideas into words by optimizing
the information bottleneck (IB) trade-off between the complexity and accuracy of
the lexicon.

2 Efficient communication: A theoretical frame-
work

The color game

We adopt a previously proposed (Regier, Kemp, et al. 2015) general communication
framework which takes an information-theoretic perspective via a scheme involving a
speaker and a listener communicating over a noisy channel. The speaker attempts to
communicate a color from the domain of colors U . The speaker wishes to communicate
about a specific color c P U , and she represents that object in her own mind as a
probability distribution

s “ δpcq (2.1)

over the universe U , with mass concentrated at c. The speaker then utters the word
w using a policy corresponding to a distribution ppw | cq to convey this mental
representation to the listener. Upon hearing this word, the listener attempts to
reconstruct the speaker’s mental representation (s) using information conveyed in
the word used by the speaker. The listener reconstruction is in turn represented by
the probability distribution

ℓ “ ppc|wq, c P U (2.2)

To enable us to later compare artificial languages to real languages, we will
now define a number of efficiency measures that has previously been shown to be
important for human languages (Regier, Kemp, et al. 2015; Gibson et al. 2017).

2.1 Information-theoretic communication loss

Though the goal of the communication game is to perfectly transmit information,
there are several challenges (e.g., limited vocabulary, noisy limited-bandwidth com-
munication medium, and differences in word definitions between speakers) that make
this goal impossible in reality. We take a semantic system to be informative to the
extent that it yields low communication cost which can be estimated using one of
the following related methods.
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Expected surprise based on empirical estimation

The information loss can be defined as the listener’s expected surprise (Gibson et al.
2017), i.e., the surprise incurred by the listener when the actual color tile that the
sender encoded as a word is revealed to the listener. The expected surprise for one
color tile c is computed as

EES
c :“ ´

ÿ

wPW

ppw|cq log2 ppc|wq. (2.3)

The probability distribution ppw|cq can be obtained in several different ways. In
Gibson et al. (Gibson et al. 2017), ppw|cq was empirically estimated from the WCS
data by computing the fraction of respondents that choose to use a particular word
for a given tile c, however, when evaluating artificial languages this is not always
as easy. Fortunately, we can query the artificial agents after training, in analog to
the WCS interviews, to estimate ppw|cq. Finally, rather then separately estimating
ppc|wq, this can be computed using Bayes theorem as

ppc|wq “
ppw|cqppcq

ř

c1PU ppw|c1qppc1q
(2.4)

where ppcq is taken to be uniform. In this case ppc|wq can be seen as a Bayesian
decoder.

KL divergence using mode map based estimation

An alternative approach, suggests the use of the KL divergence between the speaker
distribution s and the listener distribution l (Regier, Kemp, et al. 2015), i.e.,

EKL
c “ DKLpspcq||lpwqq, (2.5)

as the measure of information loss. In the case of discrete distributions, where s
has all its probability mass concentrated on one meaning, and lpwq “ ppc|wq this
becomes

EKL
c “ ´ log2 ppc|wq. (2.6)

Though ppc|wq can be estimated empirically for, e.g., the WCS data, it may also
be computed directly from a color space partitioning (Regier, Kemp, et al. 2015).
This method gives us a measure of the communication cost of using a given semantic
system to communicate about this domain, i.e., the distributions are derived from a
mode map over U . More specifically, ppc|wq is computed as

ppc|wq “

ř

jPCatpcq
simpc, jq

ř

iPU

ř

jPCatpiq simpi, jq
(2.7)

which is motivated by an exemplar selection argument (i.e., from a category);
one tends to select the most representative exemplar. Catpcq refers to the cate-
gory/partition that c belongs to, and simpi, jq measures the similarity between two
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colors i and j which is standard in these studies as in Regier et al. (Regier, Kay,
et al. 2007):

simpi, jq :“ exp
`

´c ˚ distpi, jq
2˘ , (2.8)

In equation 2.8, the CIELAB distance is represented as distpx, yq for colors x and y.
In all the simulations we report, we set c, the scaling factor, to 0.001 as in Regier et
al. (Regier, Kay, et al. 2007)2. When x “ y (identical chips), the maximum value 1
is attained. As the distance between the chips grows, the value of the function falls
rapidly to 0. What does this mean in qualitative terms? It means that there is a
point at which the colors look so different that no noticeable additional dissimilarity
effect can be distinguished.

It is interesting to note that if ppw|cq is taken to be a distribution with all its
probability mass concentrated on the word that corresponds to the partition that c
belongs to (which is natural given how the distribution s is constructed), then EKL

c

can be derived from EES
c as EES

c ´
ř

wPW ppw|cq log2 ppc|wq “ ´ log2 ppc|wq “ EKL
c .

Hence, the main difference between the two is how the distributions are estimated.

Aggregate measure of the communication cost

To get an aggregate measure of the reconstruction error over all colors in the domain
universe of colors, we compute the expected communication cost3 incurred when
transferring color information between two agents over a linguistic communication
channel as

E :“
ÿ

cPU

ppcqEc. (2.9)

Where Ec corresponds to either EKL
c or EES

c and the need probability ppcq may
be taken to be uniform(Regier, Kemp, et al. 2015; Gibson et al. 2017) or more
informed(Zaslavsky et al. 2018). However, all experiments in this paper use a
uniform need probability.

2.2 Well–formedness
A different criterion for evaluating the quality of a partition of the color space is the
so-called well–formedness criterion (Regier, Kay, et al. 2007). In fact this criterion is
exactly the same as the maximizing agreements objective of the correlation clustering
problem discussed extensively in the theoretical computer science literature (Bansal
et al. 2004; Demaine et al. 2006). Given the CIELAB similarity measure, we consider
a graph G on the tiles and assign the weight simpx, yq ´ 1

2 on the edge connecting
tiles x and y. Thus similar tiles (with similarity exceeding 1/2) will have a positive
weight while dissimilar tiles (with similarity less than 1/2) will carry negative weights
on the corresponding edges. The objective is then to find a clustering to maximize
the weights on edges within clusters. For a given partition, we can compute this sum
over all intra-cluster edges and compare it to the optimum over all partitions. While

2As pointed out by a reviewer, the similarity function (sim) may be interpreted as a Gaussian
likelihood in CIELAB space with variance defined by s.

3It was noted by a reviewer that this measure is equivalent to the conditional entropy HrC|W s.
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this optimum may be approximated using an heuristic approach (Regier, Kay, et al.
2007), we have used an algorithm with guaranteed convergence to optima.

2.3 Reinforcement learning framework for communication
over a noisy channel

We develop a version of the general communication setup, i.e. The color game, as
two automated agents trained via reinforcement learning. Our framework offers two
different training approaches.

In the first training approach the agents are allowed to use continuous real valued
messages during training in order to enable faster training. After training the agents
are however evaulated using discrete messages. In the second approach the agents
are both trained and evaluated using discrete messages.

An overview of the model trained with continuous real valued messages is shown
in Fig 1.3, the model trained with discrete messages is shown in Fig 1.4. Note that
the main difference between the training approaches is whether the communication
channel is differentiable, black solid arrows, or not, red dashed arrows.

Figure 1.3: An overview showing each computation step in the model, while using
continuous real valued messages during training, for one instance of the color
game. Black solid arrows indicate a differentiable relation while red dashed arrows
indicates a non-differentiable relation. The color of the ovals are used to highlight
the different parts of the model where black is the model input, blue and yellow
the agents, green the reward system, and red the reinforce cost function.

It turns out that training with discrete messages is more time consuming and
it becomes harder for the agents to converge and agree on a certain color partition.
Most our analysis will therefore be with respect to agents trained with continuous
real valued messages and it can be assumed that continuous real valued messages
was used during training if nothing else is stated. However, we also provide a section
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Figure 1.4: An overview showing each computation step in the model, while
using discrete messages during training, for one instance of the color game. Black
solid arrows indicate a differentiable relation while red dashed arrows indicates
a non-differentiable relation. The color of the ovals are used to highlight the
different parts of the model where black is the model input, blue and yellow the
agents, green the reward system, and red the reinforce cost function.

where we compare a limited number of experiments ran with discrete messages to
their corresponding continuous real valued counterpart.

Continuous policy

The sender trying to communicate the target color t P U creates a word vector

w “ softmaxpϕT
s ReLUpθT

s rCIELABptq ` ϵesqq, ϵe „ Np0, σ2
eq. (2.10)

where softmaxjpzq “ ezj {
ř|z|

i ezi , ReLUpzq “ maxp0, zq, tϕs, θsu are the parameters
of the sender agent, and ϵe model environment noise. w is subsequently sent to the
listener agent over a noisy communication channel as

m “ w ` ϵc, ϵc „ Np0, σ2
c q. (2.11)

Please note that, though this message will start out as a continuous real valued
message the noise will make it converge, as training goes on, to a peaked distribution
with almost all probability mass concentrated to one dimension for each color
(Foerster et al. 2016). Further, when we extract the final resulting language we use
discrete m vectors as, i.e. where all dimensions but one is zero, to ensure that no
extra information is encoded.

The receiver interprets the message received (m) and computes a distribution
over all colors in U as

ppU |mq “ softmaxpϕT
r ReLUpθT

r mqq. (2.12)
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By now merging Equation (2.10), (2.11), and (2.12) we get the final policy

ΠΩpU |tq “ ppU |tq (2.13)

where Ω “ tθs P Rkˆ3, ϕs P Rdˆk, θr P Rkˆd, ϕr P R|U |ˆku parameterizes the entire
model. The sender and receiver agents are modeled using multilayer perceptrons,
bias terms have been omitted for brevity, with one hidden layer of k “ 20 units, and
the size of the message vector is set to d “ 50 for all experiments. Note that d will
set the maximum number of color terms that the system can use to 50; however,
this is far above what is used in practice and not what will determine the number of
terms actually used by the system.

Cost function for continuous policy

Finally, plugging the policy and reward into REINFORCE (Williams 1992) we get
the cost function

JpΩq “ ´
1

Nb

Nb
ÿ

n

log ΠΩpU “ cn|tq ˚ rn. (2.14)

where Nb corresponds to the number of games over which the cost is computed and
rn is the reward detailed in section Reward. For more on REINFORCE please see
the section describing Materials and methods.

2.4 Discrete policies
In order to use discrete communication during training a message m, represented as
a discrete vector where all but one dimension is equal to zero, is sampled from the
categorical distribution over the set of possible color terms

m „ ppW |tq “ softmaxpϕT
s ReLUpθT

s rCIELABptq ` ϵesqq

ϵe „ Np0, σ2
eq.

(2.15)

Equation (2.15) gives us the policy of the sender

ΠΩspW |tq “ ppW |tq (2.16)

where Ωs “ tθs P Rkˆ3, ϕs P Rdˆku, under discrete communication.
Further, the receiver interprets the received message (m) and computes a distri-

bution over all colors U as described in equation (2.12). Hence, the receiver policy
becomes

ΠΩr pU |mq “ ppU |mq (2.17)

where Ωr “ tθr P Rkˆd, ϕr P R|U |ˆku.
As in the case with the continuous policy, the sender and reciever will be modelled

using multilayer perceptions with one hidden layer consisting of k “ 20 units. The
size of the message vector is set to d “ 50.
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Cost functions for discrete policies

Furthermore, due to the non-existence of a gradient over the communication channel
we end up with two distinct policies, one for the sender and one for the receiver,
which require us to have two cost functions that will be optimized simultaneously.

As a result, the cost function for the sender becomes

JpΩsq “ ´
1

Nb

Nb
ÿ

n

log ΠΩspmn|tq ˚ prn ´ Bnq (2.18)

and one for the receiver it becomes

JpΩrq “ ´
1

Nb

Nb
ÿ

n

log ΠΩr pU “ cn|tq ˚ prn ´ Bnq. (2.19)

Here the term Bn is the running mean of the rewards acquired so far and is used
as a baseline. Introducing a baseline to the cost function is a standard procedure
used to reduce the inherent high variance in the REINFORCE algorithm (Sutton
and Barto 2018) and we add this baseline to cope with the difficulties induced by
using discrete messages.

Since there is no gradient over the communication channel the policy update of
one agent will be independent of the policy update of the other agent. Thus, the
environment will be non-stationary and it will be harder for the agents to agree on a
certain color partition and converge.

2.5 Reward

When training the model the computed policy is used to sample a guess

c „ ΠΩpU |tq (2.20)

which is in turn used to compute a reward r that reflects the quality of the guess in
respect to the target color t.

r :“ simpc, tq (2.21)

, where sim is the color similarity function defined in Equation 2.8.
Comment: One could think of the reward in the setting of the sender and the

receiver attempting to solve a task co-operatively. Suppose that in the process, they
need to communicate the color. Then, presumably, their success in carrying out the
task is related to how well the color decoded by the receiver approximates the color
the sender intended to transmit. Thus, it is reasonable to assume that the reward
corresponding to how well they succeed in carrying out the task is proportional to the
similarity of the decoded color to the one the sender intended to convey. One could
argue the reward above is a good proxy for the reward corresponding to successfully
carrying out the task co-operatively.
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2.6 Training

All parameters are initialized to random values and trained using stochastic gradient
decent with ADAM (Kingma and Ba 2014). The batch size when training with
continuous real valued messages is set to Nb “ 100 games, and the model is trained
for a total of N “ 20000 episodes.

Moreover, when using discrete communication in the training step we set the
batch size to Nb “ 256 and the two models are trained for N “ 25000 episodes. We
have to increase the number of episodes and the batch size, compared to the case
with a continuous real valued, in order to handle the increased difficulty induced by
the discrete communication. All other parameters are set to the same value used for
training with continuous real valued messages.

2.7 Generate partitioning

After training the agents a color-map, characterising the emerged communication
schema, is constructed. This is accomplished, in analog to the WCS, by asking the
speaking agent to name (or categorize) each color-tile as

catptq “ arg max
i

wiptq, (2.22)

where wiptq is the ith element of the message vector w, defined in Equation (2.10),
as a function of the color-tile (t) shown to the agent.

3 Efficiency analysis
Based on recent results (Regier, Kemp, et al. 2015; Gibson et al. 2017) showing
that communication tends to be efficient, we would like to investigate whether the
communication schema that emerges between reinforcement learning agents exhibits
similar traits. In order to evaluate this, we compare the reinforcement learning agent
languages to the languages of the WCS in terms of the communication cost, defined
in Equation (2.9), and the related criterion described under Well–formedness in the
Materials and methods section. This comparison is done in buckets of the number
of color terms used, where a higher number of words is expected to result in lower
communication cost. To provide the reader with a sense of scale, we compliment
this picture with results using (1) a random partitioning with a uniform distribution
of tiles per color word and (2) the correlation clustering of the tiles in CIELAB
space; for more details, see CIELAB correlation clustering in Materials and methods.
These baselines are not to be interpreted as competing models but rather an upper
and lower bound on the achievable efficiency. We have left for future work another
relevant baseline to which we could have compared our systems and which may
set a higher bar for the comparison, as suggested by a reviewer: the rotational
baseline(Regier, Kay, et al. 2007), i.e., a communication schema derived by rotating
the partitioning of a real language.
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3.1 Discrete vs continuous RL training

In order to justify the use of continuous real valued messages during training, we
perform a comparison between training with continuous real valued and discrete
messages by computing the adjusted Rand index for the resulting partitions; see
Table 1.1. (See the Materials and methods section for a short explanation of adjusted
Rand index.)

We observe a high adjusted Rand index between training with the two different
message types (DM-RVM), which indicates that the two training approaches result in
partitions with a fair amount of similarity. In addition, their corresponding internal
consistency, (DM-DM) and (RVM-RVM), seems to be on the same level as the
internal consistency of human partitions (H-H). The only major difference seems to
be for 3 and 10 color terms, but as previously stated, these color terms are outliers
when it comes to human partitions. The main difference between the two different
training models is that the discrete model takes much longer to train. Hence, in
most of the rest of the paper, we report results based on the continuous training
model; as indicated above, the results are quite robust to the two different modes
of training. In section Quantitative similarity using adjusted Rand index, we again
give an explicit comparison of results using the two different methods of training.

Terms H-H DM-DM RVM-RVM DM-RVM
3 .701(˘.051) .334(˘.026) .273(˘.034) .303(˘.026)
4 .452(˘.031) .397(˘.023) .337(˘.028) .323(˘.024)
5 .476(˘.018) .459(˘.018) .373(˘.023) .376(˘.015)
6 .528(˘.011) .524(˘.006) .537(˘.033) .485(˘.009)
7 .472(˘.016) .549(˘.003) .593(˘.028) .544(˘.006)
8 .471(˘.041) .505(˘.007) .518(˘.017) .484(˘.007)
9 .584(˘.057) .457(˘.023) .510(˘.007) .472(˘.009)
10 .718 .443 .549(˘.008) .505(˘.015)

Table 1.1: Comparison between continuous real valued messages during training
and discrete messages during training. Abbreviations used in table column headers:
H=human, RVM= reinforcement learning training with continuous real valued
messages and DM= reinforcement learning training with discrete messages. Value
within parenthesis indicate a 95% confidence interval. The row corresponding to
11 color terms was excluded since no such partition was generated when training
with discrete messages.

The RL agents are trained while applying a varying amount of environmental noise
σ2

e P t1, 2, 4, 8, 16, 32, 64, 128, 256, 512u, i.e. Gaussian noise added to the color chips in
CIELAB space, and the results are averaged over 250 experiments (25 for each level
of noise). The variation in environmental noise encourages the model to find solutions
with varying numbers of color terms used, see Fig 1.5, an approach that stands
in stark contrast to modeling the language giving a static number of color terms,
e.g. (Regier, Kemp, et al. 2015), and allows us to investigate what environmental
properties affect the size of the color vocabulary. The level of communication noise
was kept constant at σ2

c “ 0.1 for all experiments.
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Figure 1.5: 2D histogram showing the number of emerged communication systems
that end up using a particular number of color terms when trained using a
particular amount of environmental noise. 25 experiments are run for each level of
noise σ2

e P t1, 2, 4, 8, 16, 32, 64, 128, 256, 512u. Hence, each bin on the x axis shows
the distribution over number of words resulting from that level of noise.

3.2 KL loss evaluation

The results in terms of KL loss, defined in Equation (2.6), can be seen in Fig 1.6. The
WCS language data are shown both as individual languages, shown as rings, and the
mean of all languages. The other results are presented as means with a 95% confidence
interval indicated as a colored region. As previously shown, human languages are
significantly more efficient than chance but do not reach perfect efficiency (Regier,
Kemp, et al. 2015), here approximated by CIELAB CC. Further, the partitions
produced by the reinforcement learning agents closely follow the efficiency of the
human languages of the WCS.

3.3 Expected surprise evaluation

Fig 1.7 show the expected surprise, defined in Equation (2.3), resulting from the
same experiment. These results are consistent with previously reported results in
experiments with human subjects (Gibson et al. 2017).
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3.4 Well–formedness evaluation

In Figure 1.8 we show the value of the well–formedness objective, for each number of
color terms. The top line represents the optimal value corresponding to the optimal
partition computed by correlation clustering. The remaining lines show the value
attained by partitions produced by our reinforcement learning algorithm and by WCS
languages. We observe that the RL partition is close to the optimal partition, and
several human languages are clustered around this. Most of these are significantly
better than the value for a random partition. These results are consistent with
results from experiments with human subjects (Regier, Kay, et al. 2007).

Figure 1.6: KL loss for varying number of color words used. The circles indicate
the KL loss of individual WCS languages sorted based on the number of color
words used. The shaded regions indicate a 95% confidence interval. Note, the
WCS language data points is a reproduction from (Regier, Kemp, et al. 2015).

Partitioning characteristics

In order to further evaluate the human resemblance of our artificially-produced
color space partitions, we compare a range of color maps both qualitatively and
quantitatively. The quantitative comparison is done using adjusted Rand index.
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Figure 1.7: Expected surprise for varying number of color terms used. The shaded
regions indicate a 95% confidence interval

3.5 Quantitative similarity using adjusted Rand index

In order to get a sense of scale, we start by computing the internal Rand index for
the reinforcement learning agents and the WCS languages; see Table 1.2. This is
accomplished by averaging the Rand index between all objects within the group.
Comparing the internal consistency of human and RL partitionings, it seems to be
on a similar level for most numbers of terms but differs for the 3 color term and
10 color term levels where the human languages yield a higher index. However, it
should be noted that there are very few samples behind the human figures for those
groups (i.e., 4 languages with 3 color terms and 2 with 10), and that they are outliers
compared to the others. Subsequently, we compute the average Rand index across
different groups, and by comparing these numbers, we can get a sense of their level
of similarity; see Table 1.2. We observe fair amounts of similarity, and the human
partitions are more similar to the CIELAB partitions than to the RL partitions, but
the RL partitions are more similar to the CIELAB partitions.

Again, the indices for the lower number of color terms are conspicuous, but this
time it has to do with the RL agents that exhibit a much lower similarity for 3 and
4 terms. A possible reason for this is connected to the way we modulate the number
of color words in the RL model, i.e., by adding noise to the color chips, which may
have drowned out much of the CIELAB information for the very low number of color
terms, which requires a large amount of noise to appear. This would explain why
RL is less similar to CCC for low terms as well. This observation suggests that other
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Figure 1.8: Well–formedness for varying number of color words used. The circles
indicate the well–formedness of individual WCS languages sorted based on the
number of words. The shaded region indicates a 95% confidence interval

mechanisms, apart from environmental noise, might influence the number of words
used in human languages.

Terms H-H RL-RL H-RL H-CCC RL-CCC H-R
3 .701(˘.051) .273(˘.034) .173(˘.028) .385(˘.038) .192(˘.020) 0(˘.000)
4 .452(˘.031) .337(˘.028) .167(˘.019) .273(˘.020) .319(˘.023) 0(˘.000)
5 .476(˘.018) .373(˘.023) .223(˘.015) .356(˘.018) .359(˘.026) 0(˘.000)
6 .528(˘.011) .537(˘.033) .277(˘.009) .396(˘.013) .433(˘.029) 0(˘.000)
7 .472(˘.016) .593(˘.028) .292(˘.008) .409(˘.016) .456(˘.007) 0(˘.000)
8 .471(˘.041) .518(˘.017) .281(˘.010) .330(˘.018) .419(˘.011) 0(˘.000)
9 .584(˘.057) .510(˘.007) .321(˘.006) .399(˘.021) .426(˘.008) 0(˘.000)
10 .718 .549(˘.008) .316(˘.012) .416(˘.050) .412(˘.009) 0(˘.001)
11 .472 .543(˘.009) .309(˘.010) .371(˘.022) .402(˘.005) 0(˘.001)

Table 1.2: Comparison of the human languages in WCS to generated languages
using Rand index. Abbreviations used in table column headers: H=human,
RL=reinforcement learning, CCC=CIELAB correlation clustering and R=random.
Value within parenthesis indicate a 95% confidence interval.

Furthermore, in Table 1.3, we compare the resulting partitions from the two
different training approaches with color partitions from human language, (H-DM)
and (H-RVM). We observe that both approaches seem to produce solutions which
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have the same level of similarity towards human partitions, and their corresponding
95% confidence intervals overlap for all but 5, 6 and 7 color terms. However, for this
number of color terms, the corresponding adjusted Rand indices for the different
training approaches are still close to each other.

In our setting, we have observed a fair amount of similarity between the resulting
color partitions when training with discrete and continuous real valued messages.
The resulting partitions also shows same level of similarity towards human partitions.
Since it is easier and faster to train with continuous real valued messages, downstream
analysis will be performed using only the training approach with continuous real
valued messages.

Terms H-DM H-RVM
3 .168(˘.019) .173(˘.028)
4 .184(˘.011) .167(˘.019)
5 .265(˘.010) .223(˘.015)
6 .301(˘.004) .277(˘.009)
7 .312(˘.003) .292(˘.008)
8 .286(˘.006) .281(˘.010)
9 .327(˘.014) .321(˘.006)
10 .286(˘.111) .316(˘.012)

Table 1.3: Comparison between continuous real valued messages during training
and discrete messages during training. Abbreviations used in table column headers:
H=human, RVM=reinforcement learning training with continuous real valued
messages and DM=reinforcement learning training with discrete messages. Value
within parenthesis indicate a 95% confidence interval. The row corresponding to
11 color terms was excluded since no such partition was generated when training
with discrete messages.

3.6 Analysis of consensus color partitions
Color partitioning across multiple human languages

To enable qualitative comparison of human and artificial color maps, we produce one
consensus color map for each number of color words where each color map is based
on all the human languages in WCS with the given number of color words. The
consensus map is computed using correlation clustering, described under Consensus
maps by correlation clustering in Materials and methods. This process results in
the 9 color maps shown to the left in Fig 1.9. Each of them represents a consensus
color partitioning of all languages using the respective number of color words; e.g.,
all languages using three color terms form one consensus map.

Reinforcement learning consensus partitions

The same procedure, as described above, is subsequently performed for the artificial
languages produced in the Efficiency analysis experiment and presented in the middle
column of Fig 1.9. The main motivation for creating consensus maps over many
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Figure 1.9: Color space partitions for different number of color terms from four
different sources. The first column show human language consensus maps, i.e.,
consensus cross all languages in the WCS that uses the particular number of
color term indicated to the left. The second column corresponds to the consensus
maps over reinforcement learning partitionings using continuous real valued
messages during training. The third column corresponds to the consensus maps
over reinforcement learning partitionings using discrete messages during training.
Finally, the fourth column of partitions is constructed using correlation clustering
directly on the graph defined by the CIELAB distance between each color tile.
Notice that, for 11 color terms, no partition was generated using discrete messages.

experiments is to make the result more robust to variations between experiments.
That said, as shown in a Table 1.2, the consistency between reinforcement learning
experiments (RL-RL) are at a level similar to human language variation (H-H).
Comparing the consensus maps of the RL model to the human consensus maps,
there are many similarities, especially for the languages with many color terms. One
exception is however the lack of light/dark gray separation for languages with few
color terms, which is not captured in the RL maps. It is however captured in the
maps with higher number of color terms, which might indicate that it has to do with
the type of noise that is applied to the environment during training, which is uniform
in all dimensions, something that might not be true in a natural environment. In fact,
analyzing the WCS color chips, the light/dark dimension has the lowest standard
deviation of the 3 dimensions, i.e., 23.3 compared to 29.0 and 32.9.
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CIELAB correlation clustering partitions

Finally, to the right in Fig 1.9, we show the partitions produced by applying
correlation clustering to CIELAB similarities produced in the Efficiency analysis
experiment.

3.7 Developing an artificial language
As a language develops over time, concepts tend to get refined into sub-categories;
e.g., when a new color term comes into use, it tends to represent a subset of a region
previously represented by another color term. It was suggested in Berlin and Kay
(Berlin and Kay 1969) that there is an evolutionary order on the partitioning of the
color space. In this proposal, the existing partitions are updated in a specific order,
with the initial distinction being light/dark, followed by red, green, yellow, blue, and
then other colors. The update occurs on the emergence of new color words.

To investigate whether similar patterns emerge while the languages developed
between reinforcement learning agents, we show snapshots of the color partitionings
as they develop during one training episode in Fig 1.10. To complement this picture,
we show how the number of terms develops on a timeline in Fig 1.11 and how the KL
loss falls as the number of terms used goes up on the same timeline in Fig 1.12. The
color partition snapshots were captured on the last episode using that number of color
terms. As seen in Fig 1.10, the order in which colors emerge in human languages is
not very well replicated in the artificial language while the subdivision of partitions
is captured to a greater extent. Further examining Fig 1.11, it is interesting to note
that the number of color terms used tend to steadily go up during training—this
resembles how the vocabulary of human speakers tends to grow when a community
communicates frequently regarding a specific subject; e.g., people working with color
tend to use a larger-than-average color vocabulary, especially when talking to each
other.

Environmental impact on partitioning
In this section we describe the results of controlling environmental factors such as
the noise level in the various channels over which the agents communicate.

3.8 Modulating the vocabulary size by varying environmen-
tal noise

Environmental noise is noise added to the color chips before shown to the agent.
In information-theoretic terms, this channel refers to the conditional probability
ppw | cq. This emulates the fact that when referring to an object in the real world
it may vary in color. This is especially true in a natural environment where, for
instance, a tree may vary considerably in color over time; hence, when referring to
specific trees using color, it may not be useful to develop very exact color terms.
In contrast, in an industrialized society, exact color information may carry more
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Figure 1.10: Color maps captured during one training session as the emerging
language progress towards an increasing number of terms.

information, which could be one reason for why they tend to use more color terms.
To show the effect of varying the environmental noise on our artificially synthesized
languages, two experiments are conducted:

The first experiment investigates the effect on the number of terms used as a
function of environmental noise. As can be seen in Fig 1.13, this has the effect of
lowering the number of color words of the resulting language. Though we cannot
say that this effect is the main driving force behind language complexity in real
languages, it is clear that it can have a significant effect in a setting like ours. An
interesting effect that we have seen consistently is that low levels of environmental
noise increase the size of the vocabulary in the resulting language.

The second experiment measures to what extent the noise affects how the space
is partitioned, apart from the number of terms used. The experiment is conducted
by computing, for each number of color terms used, the internal consistency between
all partitionings that resulted in that number of terms regardless of the level of
noise and the average internal consistency between partitionings created using the
same level of noise. The environmental noise levels used in this experiment are
ϵe P t1, 2, 4, 8, 16, 32, 64, 128, 256, 512u and the results are presented in Table 1.4.
From the numbers, we can conclude that partitions resulting from other noise groups
are as similar as within the same noise group for most levels of terms used. However,
we again see that for the small vocabulary groups (induced with a high level of
noise) there seems to be more discrepancy, especially when 3 terms are used, which
might help to further explain the lower performance in previous experiments on those
groups.
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Figure 1.11: Change in the number of words used by the agents during training.
The X-axis represents the number of episodes trained and the Y-axis the number
of words used at that point.

Terms used All Within noise group
3 0.273(˘0.034) 0.324(˘0.039)
4 0.337(˘0.028) 0.377(˘0.069)
5 0.373(˘0.023) 0.275(˘0.021)
6 0.537(˘0.033) 0.486(˘0.099)
7 0.593(˘0.028) 0.632(˘0.095)
8 0.518(˘0.017) 0.573(˘0.146)
9 0.510(˘0.007) 0.541(˘0.048)
10 0.549(˘0.008) 0.521(˘0.178)
11 0.543(˘0.009) 0.538(˘0.096)

Table 1.4: Estimating the secondary effects of environmental noise, i.e., other
than the number of terms used. For each number of terms used (column one) the
table shows the internal consistency, measured using adjusted Rand index, for
all generated maps (column two), and the mean internal consistencies computed
for each noise level (column three), e.g. if the maps that ended up using 6 terms
all where generated using 100 and 200 ϵe noise then this column would be the
average of the internal consistency of those two groups. 95% confidence interval
indicated within parenthesis.
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Figure 1.12: KL loss change during training. The X-axis shows the number of
episodes.

3.9 Modulating the vocabulary size by varying communica-
tion noise

In order to investigate the effect of noise further, we turn to the noise on the
communication channel over which words are transmitted. In Fig 1.14, we show
how the number of words is affected when noise is introduced to the communication
channel. In similarity with environmental noise, we see a decline in the number of
terms used as we increase the noise in the communication channel. However, the
characteristics seem to differ slightly where communication noise has a greater initial
effect and then levels out.

4 Materials and methods

4.1 CIELAB correlation clustering
The CIELAB clustering is the partitioning obtained by applying correlation clustering
(Demaine et al. 2006; Bansal et al. 2004), a technique to obtain clusterings when
there are both similarity and dissimilarity judgments on objects. This is applied
to a graph with vertices corresponding to color tiles and where the edge pu, vq has
weight simpu, vq ´ 1

2 where sim is the similarity metric defined in Equation (2.8).
Thus, there are both positive weights corresponding to similar tiles (sim ą 1{2)
and negative weights corresponding to dissimilar tiles (sim ă 1{2). Correlation
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Figure 1.13: The number of color terms used by the agents when different amounts
of noise are applied to their environments.

clustering is a NP-hard problem, so we have used a new method that we developed
based on a non-convex relaxation that is guaranteed to converge to a local optimum
(forthcoming).

4.2 Consensus maps by correlation clustering

In order to obtain a consensus maps of several different runs of our RL algorithm,
we again use correlation clustering. Each run of our algorithm provides a similarity
judgment between two tiles if they are placed in the same color partition and a
dissimilarity judgment otherwise. We use these judgments as input to the correlation
clustering algorithm to produce the consensus partition that aggregates all these
judgments together.

4.3 REINFORCE

REINFORCE (Williams 1992) is a well known reinforcement learning algorithm in
the policy gradient family, meaning that the policy is directly parameterized by a
differentiable model, in our case a neural network. The model is trained to maximize
expected reward by updating the neural network that suggests what actions to take
to increase the probability of actions that have previously led to rewards in similar
situations.
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Figure 1.14: The number of color terms used by the agents when different amounts
of noise are applied to their communication.

4.4 Adjusted Rand Index
The Adjusted Rand index (Rand 1971) is a method of computing the similarity
between two data clusterings or partitions that was introduced by William M. Rand.
Essentially it computes the relative number of pairs of objects that appear together
in the same class in both partitions.

4.5 The World Color Survey
The World Color Survey (WCS) (Kay and Cook 2014) is a project that compiled
color naming data from 110 unwritten languages and made it publicly available at
http://www1.icsi.berkeley.edu/wcs/data.html. For each language, an average
of 25 speakers were asked to name each color in a matrix of 330 color chips (see
Fig 1.9) sampled from the Munsell color system to uniformly cover the human visual
color spectra.
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5 Discussion

We see in figs. 1.6 and 1.7 that the RL results track the human results very closely
in the KL loss and well-formedness characteristics. In terms of Rand index similarity
(table 1.2), the overall similarity of human languages to other human languages
and RL mode maps to other RL mode maps is much greater than human language
to RL mode maps at each number of words used. The human-to-RL similarity,
however, is consistently greater than the human-to-random similarity, which is zero.
Taken together, the reinforcement learning process produces mode maps that take
into account some factor of human color space partitioning, and it also produces
well-formedness and efficiency outcomes that represent a model significantly closer
to the human behavior relative to these latter criteria.

One explanation for this difference may be found by looking at the Rand index
similarity of the human-generated mode maps to the CIELAB maps. The latter is
an idealized partitioning of the space based on color distances taken from CIELAB’s
perceptually uniform (relative to human vision) color space. The similarity is
consistently, but not hugely greater between the human maps and CIELAB than
between the human maps and the RL maps. Given the success of the RL maps at
modeling the communication characteristics of human color maps, this difference
likely reflects biological and environmental aspects of human color perception that
the simulated agents, due to their simplicity, do not represent. The RL-based maps
also show similarly high Rand index similarity to the CIELAB maps, possibly due to
the influence of the CIELAB distances on the reward function in the RL process. Our
RL model therefore successfully separates communicative factors from the details of
human perception, and gives space for experimentation on the influence of biological
and environmental detail in arriving at a color term consensus within a simulated
speech community.

Looking at the color maps in Fig 1.9, we perceive qualitatively some similarity in
overall partitioning between humans and RL agents for a given number of color words,
but the RL agents still do not closely replicate the human partitions—unsurprising,
given the Rand index differences as above. The principal difficulty that the RL
agents seem to have is in replicating human light/dark distinctions, which are under-
emphasized in the RL partitions. We hypothesize that the light/dark distinction
needs a different treatment, for reasons posed by the human perceptual architecture
(for example, non-uniform need probabilities (Baddeley and Attewell 2009)), than
the other components of the CIELAB or WCS color spaces.

On the other hand, the RL maps do share the behavior of the human maps with
regard to how partitions of the color space are refined as we increase the number
of colors used: the resulting partition tends to constitute a sub–partition rather
than producing a completely different partitioning. Thus, the RL results appear to
confirm the behavior observed by Berlin and Kay (Berlin and Kay 1969).

As argued in (Kemp et al. 2018), there are trade-offs between cognitive and
communication costs which could change over time in response to various evolutionary
forces. Such changes may be quite difficult to study in real languages, but our
framework provides a very powerful and flexible tool for studying such changes under
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carefully controlled conditions where we can adjust one parameter (say noise) while
keeping the rest fixed.

6 Conclusion
In this work, we successfully demonstrated the value of a reinforcement learning
approach to simulating the conditions under which speakers might come to an
agreement on how to partition a semantic space. Color provided a convenient domain
of experiment because of the extent of real-world data collection and analysis that
has already been performed and also due to the ability to represent the color space as
evenly-selected samples from a continuous space, as with the WCS. Our RL agents
replicate important aspects of human color communication, even though they lack
the full perceptual and linguistic architecture of human language users. However,
the RL paradigm will enable us in future work to represent more detailed aspects of
the environment and biological architecture in silico, allowing our system to be used
as a platform for hypothesis generation and cognitive modeling.

As for hypothesis generation, the behavior of our model suggests that greater
communication and environmental noise produces an overall drop in the number of
color words. This outcome provides further clues as to where to look for environmental
factors that may account for differences in color vocabulary across real-world speaker
groups.

Our approach can offer complementary insight to the recent approach of (Zaslavsky
et al. 2018) who argued that languages efficiently compress ideas into words by
optimizing the information bottleneck. Additional future work includes expanding
from a two-agent paradigm to a multi-agent and even a large-population paradigm,
which are areas under active development in the field of agent simulation. A key
long-term goal for this work is to expand from the domain of color to other semantic
domains, such as culture-specific partitions of approximate number (e.g., “few”
vs. “many”) and even “general-domain” semantic relatedness hierarchies, such as
WordNet.
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Abstract

Recent work (Xu et al. 2020) has suggested that numeral systems in differ-
ent languages are shaped by a functional need for efficient communication
in an information-theoretic sense. Here we take a learning-theoretic ap-
proach and show how efficient communication emerges via reinforcement
learning. In our framework, two artificial agents play a Lewis signaling
game where the goal is to convey a numeral concept. The agents gradu-
ally learn to communicate using reinforcement learning and the resulting
numeral systems are shown to be efficient in the information-theoretic
framework of Regier et al. (2015) and Gibson, Futrell, Jara-Ettinger, et al.
(2017). They are also shown to be similar to human numeral systems
of same type. Our results thus provide a mechanistic explanation via
reinforcement learning of the recent results in Xu et al. (2020) and can
potentially be generalized to other semantic domains.

Keywords: efficient communication; reinforcement learning; numeral
systems

1 Introduction
Why do languages partition mental concepts into words the ways they do? A recent
influential body of work suggests language is shaped by a pressure for efficient
communication which involves an information-theoretic tradeoff between cognitive
load and informativeness (Kemp and Regier 2012; Gibson, Futrell, Jara-Ettinger,
et al. 2017; Zaslavsky, Kemp, Tishby, et al. 2019). This means that language is
under pressure to be simultaneously informative, to support effective communication,
while also being simple, in order to minimize the cognitive load.

While the information-theoretic framework is insightful and has broad explanatory
power across a variety of domains, see the reviews by Kemp, Xu, et al. (2018) and Gib-
son, Futrell, Piantadosi, et al. (2019), a fundamental question that is left unaddressed
is if there is mechanistic explanation for how such efficient communication schemes
could arise. We address this question here from a learning-theoretic viewpoint: is
there a computational learning mechanism that leads to efficient communication?

We can relate our approach to previous work using the influential "three levels of
analysis" framework posited by David Marr (Marr 1982) which has been described
as one of the most enduring constructs of twentieth century cognitive science and
computational neuroscience. While the previous work such as Kemp and Regier
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(2012), Kemp, Xu, et al. (2018), and Gibson, Futrell, Piantadosi, et al. (2019) is
situated at the first or "theory" level of Marr, our analysis is at the representation
and algorithmic level. In particular, we propose very natural reinforcement learning
mechanisms that are able to learn such efficient communication schemes. The learning
aspect is emphasised by Tomaso Poggio (Poggio 2012) in an update of Marr:

it is ... important to understand how an individual organism, and
in fact a whole species, learns and evolves [the computations and the
representations used by the brain] from experience of the natural world
... a description of the learning algorithms and their a priori assumptions
is deeper, more constructive, and more useful than a description of the
details of what is actually learned ... the problem of learning is at the
core of the problem of intelligence and of understanding the brain ...
learning should be added to the list of levels of understanding ...

Recent research gives evidence that the style of learning algorithms we consider here
seem to be centrally implicated in exploration strategies used by humans (Schulz
and Gershman 2019).

Reinforcement learning has been proposed recently as a mechanistic explanation
for how efficient communication arises in the colour domain (Kågebäck et al. 2020;
Chaabouni et al. 2021) and it was observed that this approach could potentially be
applied to other domains. Here we investigate the reinforcement learning approach
in the domain of numeral systems. It has been shown recently that numeral systems
across languages reflect a need for efficient communication (Xu et al. 2020). Numeral
systems come in many shapes, some are recursive like English and can express any
numeriosity while other non-recursive systems only consists of a small set of words
(Comrie 2013). These non-recursive systems could be either exact restricted - in
the sense that exact numerosities can only be expressed on a restricted range, or
approximate like in the language Mundurukú where most numeral words have an
imprecise meaning (Pica et al. 2004). Here we only consider non-recursive systems.

We show that reinforcement learning mechanisms can indeed be used to learn
exact and approximate numeral systems which are near-optimal in an information-
theoretic sense and similar in structure to human numeral systems of the same
complexity. Unlike Kågebäck et al. (2020), who use a policy-gradient method, we
use a Q-learning algorithm with an implicit Thompson Sampling exploration scheme
(Sutton and Barto 1998).

2 Learning to communicate: Signalling games
We consider the communication framework developed in Regier et al. (2015) and Xu
et al. (2020) which consists of a sender and a listener. The sender has a concept in
mind and wishes to convey this to a listener over a discrete communication channel.
The listener then tries to reconstruct the concept. This is illustrated schematically
in Figure 2.1.

We extend this setup to a Lewis signaling game (Lewis 1969), by considering two
artificial agents starting tabula rasa and gradually learning to communicate efficiently
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“A few”

Figure 2.1: Illustration of the communication setup presented in Xu et al. (2020).
The sender wants to convey the numeral concept 4 and utters “a few”. The listener
is unsure of which numeral the sender is referring to and produces a probability
distribution over possible numerals.

via a reinforcement learning algorithm (introduced in detail in later sections) by
playing several rounds of the game. In each round of the game, a number n P N
from the interval N is sampled according to a need probability of the environment,
ppnq, which represent how often a numeral concept has to be referred to in the
environment. The sampled number n is then given to the sender which has to pick a
word w from the vocabulary W and utter to the listener. Having received a word w,
the listener guesses a number n̂ P N and a shared reward, rpn, n̂q, is given to both
agents based on the distance between the guess n̂ and the true number n. Here we
explore three different reward functions, one linear, one inverse and one exponential

rlinearpn, n̂q “ 1 ´
|n ´ n̂|

|N |
,

rinversepn, n̂q “ p1 ` |n ´ n̂|q
´1,

rexppn, n̂q “ e´|n´n̂|.

One round of the signaling game is visualized in Figure 2.2 and one could interpret
it as follows: the agents are playing a cooperative game which involves solving a
common task in which success depends on how well the listener reconstructed the
number the sender had in mind. The reward functions considered were chosen in
order to model different pressure for how precise the listener’s reconstruction has to
be.

2.1 Reinforcement learning for efficient communication
Reinforcement learning is an area of machine learning which studies how agents in
an environment can learn to pick actions given states as to maximize a reward signal
(Sutton and Barto 1998) and recent studies suggests that reinforcement learning
may be an component in neural mechanisms such as the phasic activity of dopamine
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Figure 2.2: Illustration of one round of our Lewis signaling game, which will be
formally introduced in later sections. The sender is given a number n and samples
a model fS from FS using dropout and conveys the word w giving highest reward
according to fS . The listener proceeds in similar fashion, given w it samples a
model fL from FL and guesses the number n̂ that yields most reward according
to fL. A shared reward is given to both agent based on how close n̂ is to n.

neurons (Niv et al. 2005; Dabney et al. 2020). In this work our agents will learn to
communicate efficiently using reinforcement learning by maximizing the reward in
the Lewis signaling game, Figure 2.2. For the sender this translates into conveying
the word w which yields highest expected reward given the number n and for the
listener to guess the number n̂ yielding highest expected reward given the word w.

Inherent in this setup is an exploration-exploitation tradeoff—the agents have
to balance between exploring uncertain actions in order to gain new insights about
the environment and exploiting it current knowledge in order to maximize the
reward signal. Recent work in neuroscience suggests that classical machine learning
strategies, such as Thompson sampling (Thompson 1933), seem to mechanistically
correspond to exploration strategies used by humans (Schulz and Gershman 2019).

In this work we will use the Bayesian approach and Thompson sampling in order
to handle the exploration-exploitation tradeoff. This means that each agent keeps a
belief, or posterior distribution, over possible models of the environment and at each
time step it samples a plausible model from the belief and acts optimal according
to the sampled model. After getting feedback from the real environment an agent
updates its belief over possible models accordingly. We will use an implicit form
of Thompson sampling presented in Gal and Ghahramani (2016) where each agent
will be represented as a feedforward neural network1 that maps input and action to
expected reward

FS : N ˆ W ÝÑ r0, 1s

FL : W ˆ N ÝÑ r0, 1s.

Given a new round of our signaling game each agent samples a smaller network
fS „ FS and fL „ FL from its neural network using the regularization technique
dropout (Srivastava et al. 2014) which means that the activation at each neuron in
the network is randomly set to 0 with probability p. In this way the agents sample,

1From now on we will use the subscript S for the sender and the subscript L for the listener.
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via dropout, one out of all possible models of the expected rewards spanned by FS

and FL. Hence, the networks fS and fL become the current internal models of the
expected reward of the speaker and listener. Given an input, each agent acts greedily
w.r.t. the smaller networks fS and fL; given the number n, the sender conveys the
word ŵ yielding highest expected reward according the sampled model

ŵ “ arg max
wPW

fSpn, wq

Similarly, given the word ŵ, the listener guesses the number n̂ satisfying

n̂ “ arg max
n1PN

fLpŵ, n1
q.

After playing the game for m rounds, each agent update the weights in FS (or
respectively FL) by finding the values which minimize the mean-squared error (MSE)

MSES “
1
m

m
ÿ

i

pfSpŵi, niq ´ riq
2,

MSEL “
1
m

m
ÿ

i

pfLpn̂i, ŵiq ´ riq
2.

It should be noted that this game is only partially observable—in each round of the
game the sender observes the tuple pn, ŵ, rq while the listener observes pŵ, n̂, rq.

3 Numeral systems
We study two of the three types of numeral systems presented in Xu et al. (2020).
First, we consider the exact restricted systems, or simply exact systems, where exact
numerosities can only be expressed on a restricted range. An example of this is
the numeral system one, two, three and more than three. With this system precise
communication can only be achieved for the first three numerals and it is clear which
part of the number line each numeral word corresponds to.

The second type is approximate numeral systems where the meaning of numerals
are approximate. Example of such inexact numerals are a few and many which do
not cover a precise restricted range.

We do not address recursive numeral systems in this work since it require a
different way of modelling the agents and we leave it for future work.

3.1 Artificial numeral systems
Given that a sender-listener pair has played the signaling game in Figure 2.2 for a
certain number of rounds we would like to compute the resulting numeral system.
We do this by first estimating the conditional probability ppw|nq, i.e the probability
that the sender refers to the number n with the word w, by running m “ 1000
rounds of the game, without updating the agents, with the number n given to the
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sender and count how many times each word is used. Hence, we do the following
Monte-Carlo estimation

ppw|nq «
1
m

m
ÿ

i“1
1pw “ arg max

ŵ
fS,ipŵ, nqq

where 1p¨q is the indicator function. We check if the resulting conditional distribution
is peaked, i.e if it for each n assigns more than 0.90 probability mass to one token w,
if not we interpret it as an approximate numeral system. Moreover, we consider the
mode of ppw|nq to be an exact numeral system.

3.2 Complexity and communication cost
We measure complexity of a numeral system simply as the number of words used
in the system. In Xu et al. (2020) a grammar based complexity measure was used.
This is not needed here since we do not consider recursive numeral systems and for
exact and approximate systems there is no pressure for systematicity.

Given a sender distribution S and a listener distribution Lw we measure the
communicative cost of conveying a number n as the information lost in the listener’s
reconstruction of the sender distribution given the numeral w. As has been done in
previous studies (Xu et al. 2020), we model this as the Kullback-Leibler divergence
(KL) between S and Lw. Under sender certainty, Spnq “ 1, this reduces to the
surprisal

KLpS||Lwq “
ÿ

i

Spiq log Spiq

Lwpiq
“ ´ log Lwpnq,

which can be viewed as how surprised the listener would be by the fact that the
sender uttered w if they knew the true number n.

In order to measure the full communication cost of a numeral system we compute
the expected surprisal as

C “ ´
ÿ

n,w

ppw|nqppnq log Lwpnq,

where Lwpnq is computed using Bayes rule

Lwpnq “
ppw|nqppnq

ř

n1 ppw|n1qppn1q
.

Here ppw|nq denotes the sender partition of the number line and ppnq the need
probability of the environment. The measure of the total communication cost of
a numeral system used here is exactly the measure of communication cost used in
Gibson, Futrell, Jara-Ettinger, et al. (2017) and by taking a deterministic sender, i.e
a sender which for each n assigns all probability mass to a single word w, we get the
measure of communication cost used in Xu et al. (2020).

Note that we use the speaker model to compute the listener distribution, instead
of the listener model, because given a number the sender is forced to assign positive
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Figure 2.3: Term usage vs communication cost. Note that our agents are not
restricted to model the words as Gaussian distributions and can create other
probability distributions. This explains why the line goes below the convex hull,
for 2 terms, which was computed assuming Gaussian distributions. We plot the
numeral systems from the human languages presented Table 2.1 and since many
of them are very similar we only get a few distinct points for human languages in
the figure.

probability to at least one word while the listener can choose to never guess on a
number no matter which word is conveyed from the sender. For example the word
“many” might refer to a large, or possible infinite, of numbers while the listener
may choose to only guess on small subset of these numbers given that “many” has
been uttered. Another argument for computing the listener distribution using Bayes
rule is because, given a sender distribution, it minimizes the communication cost in
the information bottleneck framework presented in Zaslavsky, Kemp, Regier, et al.
(2018). The proof of this is presented in the supplementary files of Zaslavsky, Kemp,
Regier, et al. (2018).

4 Experiments

We consider the interval N “ r1, 20s and each agent is modelled as a feed-forward
neural network with one hidden layer consisting of 50 hidden neurons with a dropout
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Figure 2.4: Comparison between the optimal numeral systems w.r.t communication
cost, human systems and the artificial consensus systems produced by our agents
under the different reward functions. We considered the experiments using the
power-law prior and the optimal systems are computed under this prior. Each
color represents a numeral word and the corresponding interval on the number
line that the word represents.

rate of p “ 0.3 and with ReLu activation 2. The agents starts with a vocabulary W
3 of size 10 and is trained for 10 000 updates where each update is over a batch of
100 rounds of the signaling game. The weights in the neural networks are updated
using a version of stochastic gradient descent called Adam (Kingma and Ba 2014)
with an initial learning-rate of 0.001. The dropout rate, learning rate and batch size
are in the range of what is commonly used in machine learning. However, we also
performed experiments varying these parameters and found the downstream results
to be robust.

We estimate the need probability in four different ways and the priors are shown
in Figure 2.5a. The power-law prior is computed by first taking the normalized
frequencies of English numerals in the Google ngram corpus English 2000 (Michel
et al. 2011) and smoothing the frequencies using a power-law distribution as done in
Xu et al. (2020). We also derive need probabilities using the capacity-achieving prior
(CAP) method (Zaslavsky, Kemp, Regier, et al. 2018), which infer a prior directly
from naming data, and by using the maximum-entropy (MaxEnt) method (Zaslavsky,
Kemp, Tishby, et al. 2019), which given a naming distribution ppw|nq and word
frequencies ppwq computes the maximum-entropy achieving prior ppnq given these
constraints. We obtain a universal CAP by first computing a CAP for each exact

2This interval was chosen since the need distributions are exponentially decaying and very little
probability mass lies beyond 20, see Figure 2.5a.

3The size of the vocabulary W was taken to be equal to the largest number of terms among the
human systems analyzed in Xu et al. (2020), which are presented in Table 2.1.
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numeral system presented in Table 2.1 and then averaging them together. Further,
to compute a MaxEnt prior we consider the language Gooniyandi, which has four
number terms translated to one, two, three, many, and the corpus data available for
the language Gooniyandi[p. 204] (McGregor 2004). When computing the MaxEnt
prior the fourth term, many, is modelled as a Gaussian distribution with mean µ “ 5
and standard deviation σ “ 0.31 ˆ µ. Lastly, we consider an uniform prior which was
also done in Xu et al. (2020) and the authors showed that human systems are less
optimal under this prior compare to the more skewed power-law prior, illustrating
that the near-optimality patterns found in human numeral systems depend critically
on the need probability.

We start by training 6000 independent sender-listener pairs under the power-law
prior, for each reward function. We then fix the reward function to be linear and
train 6000 independent sender-listener pairs for each of the priors CAP, MaxEnt
and Uniform. Note that the agents are free to decide how many terms from the
vocabulary that are actually used during communication and it is possible for the
agents to converge to a numeral system with less than 10 terms. Thus, the actual
number of terms in the final numeral system will vary over sender-listener pairs due
to randomness in the initialization of the neural networks and the sampling from the
need probability.

Following Xu et al. (2020), we compute the convex hull of hypothetical approx-
imate and exact numeral systems to use as baselines. For exact systems this is
done using an approach where we start from a random numeral system and greedily
updates the system until a local optima is encountered w.r.t communication cost.
For approximate systems we proceed in similar fashion but model a numeral word
as Gaussian with a mean µw and a standard deviation σ “ 0.31 ˆ µw following Xu
et al. (2020). We start from randomly chosen means and perform greedy updates
until a local optima is reached. For both types of systems we solve for both the best
and worst performing numeral system and the optimization procedures are repeated
1000 times for each number of terms.
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Figure 2.5: a) The need probabilities, or priors, used. b) Relative frequency of
term uses over sender-listener pairs using the linear reward function and varying
the need probability. The more left-skewed the need probability is, the fewer
terms are generally used by the agents.

Further, we compare the numeral systems developed by our agents to the human
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approximate and exact restricted numeral systems considered in Xu et al. (2020)
which are presented in Table 2.1. Most of this data was collected from Comrie (2013)
except for Chiquitano, Fuyuge, Krenák which comes from Hammarström (2010) and
Mundurukú which comes Pica et al. (2004).

Approximate systems:
Chiquitano, Fuyuge, Gooniyandi, Mundurukú, Pirahã, Wari
Exact restricted systems:
Achagua, Araona, Awa Pit, Barasano, Baré, Hixkaryana,
Imonda, Kayardild, Krenák, Mangarrayi,
Martuthunira, Pitjantjatjara, Rama, Yidiny, !Xóõ

Table 2.1: Human numeral systems considered in Figure 2.3.

In Figure 2.3 we present the performance of our agents, w.r.t communication
cost, relative to numeral systems found in human languages and the convex hull
of hypothetically possible numeral systems, for the different need probabilities and
various reward functions. We observe that our agents produce numeral systems
that are near-optimal for all need probabilities and reward functions. For the left-
skewed priors we observe that the communication cost of our agents are close to the
communication cost of human systems.

Furthermore, in Figure 2.5b we plot the relative frequency of term usages between
the sender-listener pairs when using the linear reward function and varying the need
probability. As expected, we observe that a more skewed distribution generally
results in fewer terms used by the agents which indicates that numeral systems with
few terms can be sufficient to achieve a near-optimal reward while we observe a
pressure for using more terms under the uniformed need probability.

We use Correlation Clustering (Bansal et al. 2004) to find the consensus numeral
system for each number of terms over all experiments. Correlation Clustering is a
method for finding the optimal clustering, w.r.t. a similarity measure. We create a
20 ˆ 20 matrix and each time two numbers i and j belongs to the same partition,
or word, over two different sender-listener pairs we increase the element pi, jq of
the matrix by 1 otherwise we decrease it with 1. We apply Correlation Clustering
to the final matrix to get a consensus system and this will be an exact numeral
system. The resulting systems for the experiments using the power-law prior are
presented in Figure 2.4 and we observe some similarities between the consensus
systems and human systems with the same number of terms. The main difference
seems to be that our agents produce systems that tends to be slightly less precise
for smaller numbers, especially for the linear reward function, and this could be a
result of having reward functions that gives a fair amount of reward for imprecise
reconstruction of the number the sender had in mind.

In addition, we compare the representation of numbers developed by our agents to
the Gaussian model used in Xu et al. (2020), which is inspired by the the formalization
of the approximate number line presented in Pica et al. (2004). The model assumes
that a numeral word, w, is represented as a Gaussian distribution with some mean
µw and standard deviation σ “ ν ˆ µw where ν is the Weber fraction. We fit this
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model to the distributions produced by our agents by first computing, for each
sender-listener pair i, the expected number µi

w given a word w under the listener
distribution µi

w “ ELi
w

rn|ws. We then compute a distribution according to

pi
νpn|wq9e

´p
|n´µi

w |

2νˆµi
w

q2

and search for ν P r0.05, 2s, with a granularity of 0.01, that minimizes the the MSE
w.r.t the listener distribution of pair i. The best fitting Weber fractions along with
the corresponding MSEs are presented in Table 2.2 and the Gaussian model fits the
listener distribution well with an average MSE in the interval r0.0032, 0076s over
all the sender-listener pairs. These errors are of the same magnitude as the error
reported between the Gaussian model and the numeral system of Mundurukú in Xu
et al. (2020) and with similar Weber fraction as reported for Mundurukú adults in
Piazza et al. (2013). Hence, our agents produce approximate numeral systems via
reinforcement learning which exhibit similar behavior as the Gaussian models used
in Xu et al. (2020) and Pica et al. (2004) without being explicitly programmed to do
so.

Reward Best ν MSE
Linear 0.31 0.0042 ˘ 0.0036
Inverse 0.31 0.0032 ˘ 0.0042
Exponential 0.44 0.0076 ˘ 0.0063

Table 2.2: The Weber fractions corresponding the Gaussian model that on average
fits the listener distribution best along with the average MSE ˘1 standard deviation
for that Weber fraction, averaged over all sender-listener pairs trained using the
particular reward function.

5 Conclusions and future work
We have shown that artificial agents can develop exact and approximate numeral
systems, via interaction and reinforcement learning, which are near-optimal in
an information-theoretic sense and similar to human systems. Our work offers a
mechanistic explanation via reinforcement learning of the results in Xu et al. (2020).
More generally, it offers a powerful framework to address fundamental questions
of cognition across a wide range of semantic domains using a learning theoretic
approach that complements the normative approaches summarized in Kemp, Xu,
et al. (2018) and Gibson, Futrell, Piantadosi, et al. (2019).

In the numerals domain, there are still several questions that remain to be explored:
Would the results be the same if we increase the range of numbers? Can approximate
arithmetic be learned in the same way? Could the recursive systems described in Xu
et al. (2020) be learned via interaction? An interesting topic for future work is to
establish a rigorous connection between reward function and communication cost in
our setup.
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In this work our artificial agents have been completely driven by the reward
signal. In the future we would like to add a pragmatic reasoning scheme to our
model, similar to RSA (Frank and Goodman 2012), and explore what effect this has
on the emergent behavior.
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Abstract

In this work we introduce a structured signaling game, an extension of
the classical signaling game with a similarity structure between meanings
in the context, along with a variant of the Rational Speech Act (RSA)
framework which we call structured-RSA (sRSA) for pragmatic reasoning
in structured domains. We explore the behavior of the sRSA in the domain
of color and show that pragmatic agents using sRSA on top of semantic
representations, derived from the World Color Survey, attain efficiency
very close to the information theoretic limit after only 1 or 2 levels of
recursion. We also explore the interaction between pragmatic reasoning
and learning in multi-agent reinforcement learning framework. Our results
illustrate that artificial agents using sRSA develop communication closer
to the information theoretic frontier compared to agents using RSA and
just reinforcement learning. We also find that the ambiguity of the
semantic representation increases as the pragmatic agents are allowed to
perform deeper reasoning about each other during learning.

Keywords: efficient communication; multi-agent reinforce-
ment learning; pragmatic reasoning

1 Introduction
The Rational Speech Act (RSA) framework (Frank and Goodman 2012; Goodman and
Frank 2016) has emerged as a leading probabilistic model of pragmatic communication
formalizing the Gricean view on pragmatics (Grice 1975). In RSA models, each agent
reasons about the other agent’s belief, in a game-theoretic fashion, in order to infer
the context dependent meaning of an utterance. Models of this type have been used
to make accurate predictions about human behavior over a wide range of different
and complex tasks (Goodman and Frank 2016).

It was recently shown by Peloquin et al. (2020) that efficient language use and
structure emerge as pragmatic agents interact with each other in a signaling game. In
their framework the efficiency was measured as the expected cross-entropy between
the speaker and listener distributions.

However, in certain settings, the meaning space may have special structure which
needs to be exploited to develop efficient communication. A good example is the
domain of colors where it is possible to quantify the similarity between different
colors. Hence, in a context where agents are talking about different colors an error
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114 1. Introduction

might be quantified differently depending on whether the listener confused the color
the speaker was referring to with a very similar color or with a completely different
color. This is something that is not captured by a purely entropy-based efficiency
measure.

Here we take a new approach to the basic question addressed in Peloquin et al.
(2020) about how efficient communication arises via the interaction of pragmatic
agents. First, to take structure into account, we introduce a notion of a structured
signaling game, an extension of the standard signaling game, commonly used in
work regarding pragmatic reasoning. For this type of signaling game we introduce
an extension of the standard RSA which we call structured-RSA (sRSA) where an
agent accounts for the structure in the meaning space during the reasoning process.
We explore the differences between RSA and sRSA in the color domain, a domain
commonly used in cognitive science to explore various linguistic phenomena (Regier,
Kemp, et al. 2015; Gibson et al. 2017). Second, we quantify the efficiency of the
resulting communication schemes using the information theoretic notions of efficiency
from Zaslavsky, Kemp, et al. (2018) and the well-formedness measure from Regier,
Kay, et al. (2007).

We first investigate the use of human representations such as the color naming
systems found in the World Color Survey (Cook et al. 2005) as a basis for reasoning
by pragmatic agents. We show that efficiency of communication increases much more
when agents reason using sRSA compared to agents using RSA and base policies.
The most striking result is that sRSA agents initialized with human representations
only need a recursion depth of 1 or 2 in order to come very close to the optimal
frontier.

Next, we consider computational learning agents interacting with each other
in a multi-agent reinforcement learning framework similar to those considered in
Kågebäck et al. (2020), Chaabouni et al. (2021), Carlsson et al. (2021), and Ohmer
et al. (2022). Our results in this learning framework suggest that pragmatic agents
equipped with sRSA learn more efficient color naming systems compared to agents
using RSA or pure reinforcement learning. We also find that ambiguity arises to
a greater extent in the semantic representation as the computational agents are
allowed to perform deeper reasoning about each other. Even though the ambiguity
increases, the computational agents using sRSA still develop efficient and accurate
communication. Compared to previous works (Monroe et al. 2017; Kågebäck et al.
2020; Chaabouni et al. 2021; Hu et al. 2021), which only account for the structure of
the color space in the non-contextual meaning function. Our approach extends this
and explicitly accounts for structure in the RSA recursion.

The work of Zaslavsky, Hu, et al. (2021) is also related to our work. They use
the fact that the softmax operator maximizes a trade-off between utility and entropy
(Fudenberg and Levine 1998) to argue that the RSA recursion can be viewed as an
alternating maximization of a least-effort objective. They ground the recursion in
Rate-Distortion theory and derive a new update of the sender based on the mutual
information between meaning and utterance. In contrast to their work, our sRSA is
based on the standard RSA recursion, with the difference that our utility function
leverages the pair-wise similarity, or distortion, between meanings in the context.
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2 Structured signaling games and sRSA
In our signaling game, two agents, one sender and one listener, observe a context of
n meanings C “ tmiu where each mi lies in some meaning space M. The goal of the
sender is to describe one of the meanings to the listener. In the standard setup of
a signaling game, the agents share a semantic representation, or meaning function,
Lpm, wq, which describes how well the utterance w describes the object m. In our
structured version we also assume that the agents share a similarity matrix Z where
element Zij describes how similar meanings mi and mj are. We assume Zij P r0, 1s

with Zii “ 1. An example of a structured signaling game in the domain of colors is
presented in Figure 3.1.

2.1 Similarity-sensitive utility and sRSA

Following Degen et al. (2020), we consider agents equipped with a continuous meaning
function, or semantic representation, Lpm, wq P r0, 1s which describes how well a
meaning m can be mapped to an utterance w. On top of the meaning function, our
agents use the RSA in order to reason about each other’s behavior given the context
C. Given a literal listener proportional to the meaning function, L0pm|wq9Lpm, wq,
the following recursion is applied in the RSA

Stpw|m, Cq9eαUtpm,w,Cq (2.1)
Ltpm|w, Cq9Stpw|m, Cqppm|Cq (2.2)

where Utpw, m, Cq is the expected utility, of conveying message w given the meaning
m in the context C, and ppm|Cq is the prior probability of m given C. In RSA
the utility of the sender is usually based on reducing the epistemic uncertainty the
listener carries about the true meaning, and is taken to be the negative surprisal of
the listener Utpw, m, Cq “ log Lt´1pm|w, Cq. We will denote an agent using RSA at
a recursion depth of t with parameter α as RSApt, αq.

Similarity-sensitive surprisal

Leinster (2021) recently introduced extensions of entropy and other information
theoretic concepts in the context of structured domains, where one has a matrix
of similarities Z. Inspired by this, we define the similarity-sensitive surprisal of a
listener, L, as

IZ
pm, w, Cq “ ´ log

ÿ

m1

Zmm1Lpm1
|w, Cq. (2.3)

Here Zpm, m1q is the similarity between the two meanings m and m1. This measure
captures the desirable property that a listener shouldn’t be as surprised if a speaker
used the same word for two similar colors compared to if the speaker used the same
word for two very different colors.
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Defining the utility as Upm, wq “ ´IZpm, wq we arrive at structured version of
RSA (sRSA) with similarity-sensitive sender. Note that this utility yields a sender
proportional to the power α of the expected similarity

Stpw|m, Cq9p
ÿ

m1PC
Zmm1Lt´1pm1

|wqq
α. (2.4)

In next section 3 and in Figure 3.1 we give a simple example in the color domain to
illustrate the difference between RSA and sRSA.

In the special case where Z is the identity matrix, i.e. where meanings in the
context share no similarity, (2.3) reduces to the standard surprisal and the sender in
(2.4) reduces to the standard RSA sender. We will denote an agent using sRSA at a
recursion depth of t with parameter α as sRSApt, αq.

In general, given a distortion measure on the meaning space d : M ˆ M Ñ R`,
we can construct a natural similarity measure as Zmm1 :“ e´βdpm,m1q, β ą 0.

3 Color domain: Efficiency and well-formedness
We will use colors as our testbed for pragmatic reasoning in structured signaling
games. The seminal work of Zaslavsky, Kemp, et al. (2018) showed that color
naming systems in the World Color Survey (WCS) (Cook et al. 2005) optimize an
information-theoretic trade-off between complexity and accuracy of the meaning
function. Following Zaslavsky, Kemp, et al. (2018) we will take the complexity of a
color naming system as the mutual information between word and meaning

Complexity “ IpM ; W q

and the accuracy as

Accuracy “ IpW ; Uq.

As in Zaslavsky, Kemp, et al. (2018) we assume a meaning m to be a distribution
over color chips proportional to a isotropic Gaussian, mpuq9e´ 1

64 ||xm´xu||2 where xm

is the CIELAB vector corresponding to color chip m.
Regier, Kay, et al. (2007) showed also that human color naming reflects optimal

partitions of the color space w.r.t. to a measure of well-formedness. The well-
formedness criterion was based on the following measure of perceptual similarity
between colors

simpm, m1
q “ e´0.001||xm´xm1 ||2 (3.1)

This similarity measure will be used in our sRSA model in the downstream analysis.

sRSA vs RSA

Figure 3.1 gives a simple example of a structured signaling game where the context
consists of 6 different colors. The meaning function mapping color to word is based
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Meaning Function: Culina (Peru)

𝑅𝑆𝐴(∞, 5) 𝑠𝑅𝑆𝐴(∞, 5)

a)

c) d)

b)
Similarity Matrix

Speaker Listener

Figure 3.1: An example of a structured signaling game in the color domain.

on the naming data found in the World Color Survey for the language Culina is
shown in Figure 1a. The similarity matrix, which describes how similar two colors
are w.r.t. the similarity measure defined in (3.1), is shown in Figure 1b. We use
RSApt, αq to denote the result of applying depth t RSA and RSAp8, αq to denote
the limit as t Ñ 8, and similarly for sRSA. Figure 1c and Figure 1d show the limit
points for RSA and sRSA (with α “ 5). Since RSA minimizes only the surprisal of
the listener and does not account for the similarity structure we observe that the
lighter blue color and green color are mapped to the same word. Unlike RSA, the
sRSA takes the similarity matrix into account and converges to a solution where the
first 3 colors can be uniquely determined, while the last 3, all variants of blue, are
mapped to the same word.

3.1 Human representations
The WCS data consist of naming data from 110 languages, with an average of 25
speakers for each language. Since the WCS data contain data from speakers, we
believe it is more appropriate to consider a slightly different version of the RSA
recursion, where the agents start reasoning from a literal sender proportional to the
naming data from WCS1. For a language l in the WCS study and corresponding
naming data Dlpw, mq we consider the following recursion

Sl
0pw, m, Cq9Dl

pw, mq

Ll
tpm|w, Cq9Sl

t´1pw|m, Cqppm|Cq

Sl
tpw|mq9eUtpw,m,Cq.

We consider a structured signaling game with the context, C, being the entire
Munsell chart. Hence, a sender is given a certain color chip from the Munsell chart

1As in Regier, Kemp, et al. (2015), we only consider major color terms. We say that a color
term is major if it is the mode category for at least 10 chips in the Munsell Chart.
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(a) Information-theoretic trade-off between com-
plexity and accuracy after one recursion.
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(b) Well-formedness of the agents after one recur-
sion.
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(c) Information-theoretic trade-off between com-
plexity and accuracy in the limit.
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(d) Well-formedness as the recursions goes to in-
finity.

Figure 3.2: Results for applying pragmatic reasoning on-top of the color naming
data in WCS. Here depth of recursion indicates the depth of the final sender in
the recursion. We use α “ 5 in the recursions. The black square indicates the
position of the base agent of the language Karajá.

and should describe this to the listener, which then produces a distribution over the
color chips in the chart. The context we consider here is much larger compared to
the ones considered in, for example, Monroe et al. (2017). The reason is that we are
interested in larger contexts where the number of meanings is much larger than the
number of utterances and exact communication is impossible. We will consider a
uniform need distribution over the chart and leave it for future work to study skewed
priors like the one used in Zaslavsky, Kemp, et al. (2018). As a baseline we will
consider the base agents from the recursion, i.e. a sender proportional to the naming
data and the corresponding Bayesian listener. The information-theoretic frontier is
computed using the Blahut-Arimoto algorithm with the annealing scheme outlined
in Zaslavsky, Kemp, et al. (2018) and a uniform prior. The well-formedness frontier
is computed using the Correlation Clustering approach described in Kågebäck et al.
(2020).

In Figure 3.2a we compare the efficiency of the base agents to the efficiency of the
pragmatic agents after performing one recursion in the respective reasoning model.
We observe that pragmatic reasoning leads to more complex and accurate behavior
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Figure 3.3: Trajectories of RSA and sRSA for Karajá.

for both RSA and sRSA compared to the base agents. However, we also observe
that the RSA agents have not moved closer to the optimal frontier while the sRSA
agents are very close to the frontier after only one recursion. Interestingly, when the
recursions are allowed to go the limit, Figure 3.2c, the RSA agents seem to move
away from the optimal frontier while the sRSA converges to naming distributions
very close to the optimal frontier.

(a) Base agent (b) CC agent

(c) RSAp1, 5q (d) RSAp8, 5q

(e) sRSAp1, 5q (f) sRSAp8, 5q

Figure 3.4: Karajá, Brazil. The sRSA model refine and smooth the colormap in
only one recursion. In the limit, we observe that the sRSA approaches the true
optimal agent w.r.t. well-formedness (CC Agent). Each color term is colored with
the average color mapped to the term.

Further, Figure 3.2b illustrates the well-formedness of the agents after one
recursion. The pragmatic agents greatly improve the well-formedness of the base
agents after only one recursion. As observed for efficiency as well, we see that sRSA,
which takes the structure into account, improves the well-formedness to a greater
extent. In the limit, see Figure 3.2d, the sRSA agents converge to optimal naming
distributions w.r.t. the well-formedness criterion.

Many studies, including the recent one in Frank, Emilsson, et al. (2021), have
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reported that humans rarely use more than 1 or 2 levels of recursion in signaling
games. It is therefore intriguing that the sRSA only needs only 1 or 2 recursions to
reach the information-theoretic frontier. We believe this is something worth exploring
further in the future.

An outlier, when it comes to both efficiency and well-formedness, is the base agent
of the language Karajá, highlighted by the black square in Figures 3.2a and 3.2b.
In Figure 3.3 we illustrate the efficiency and well-formedness of the corresponding
RSA and sRSA agents as we increase the recursion depth. Interestingly, applying
a few steps of sRSA, see Figure 3.3, yields a near-optimal agent, both when it
comes to well-formedness and efficiency. This suggests that even though the naming
distribution of Karajá is not efficient and well-formed in itself, it serves as a good
initialization for a pragmatic and rational agent - but for an agent that takes domain
structure into account. Without taking the structure into account, the RSA agent
doesn’t lead to a more efficient behavior; instead the RSA agent seems to be moving
away from the optimal frontier.

In Figure 3.4, we see the corresponding mode-maps for the different RSA versions
at depth 1 and in the limit. We clearly see that taking the structure into account in
the reasoning process produces agents that have very smooth mode-maps already
at depth 1, see Figure 3.4e. Here we also see that the standard RSA objective, see
Figures 3.4c and 3.4d, fails to produce smooth mode-maps since it does not account
for the structure of the domain space. Worth highlighting is that the sRSA, Figure
3.4f, seems to converge to a mode-map very close to the optimal mode-map w.r.t.
the well-formedness measure, see Figure 3.4b. This is perhaps expected since the
sRSA utility considers perceptual similarity.

3.2 Artificial agents
In our multi-agent reinforcement learning framework, two agents will play a structured
signaling game about colors. In the beginning of each game, one agent is randomly
assigned to be the speaker agent and the other one acts as a listener. Each agent will
keep their own parameterization of the meaning function Lθ using a neural network
with parameters θ and ϕ. Given a context, both agents will apply either RSA or
sRSA on the meaning function for t iterations to get their corresponding policies
St,θpw|m, Cq and Lt,ϕpm|w, Cq. The speaker agent then samples an utterance given
the target according to St,θpw|m, Cq, and upon receiving the utterance, the listener
samples a guess according to the distribution Lt,ϕpm|w, Cq. A binary reward is given
to both agents depending on whether the listener produced a correct guess and
both agents will update their respective meaning function using the REINFORCE
objective (Williams 1992), which for the sender agent corresponds to taking the
gradient of r log St,θpw|m, Cq and for the listener gradient of r log Lθpm|w, Cq. A
similar computational setup was recently considered in Ohmer et al. (2022).

We take each neural network to have one hidden layer of 25 neurons with ReLU
activation for the hidden layer and sigmoid activation in the output layer. We train
the agents on contexts consisting of 5 colors sampled from the Munsell chart and
represented as a vector in CIELAB space. We vary the depth of the agent from 0
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Figure 3.5: In the following plots, depth indicates the level of the final listener in
the recursion, and the error bars correspond to the width of the 95% confidence
interval. We observe that, as the depth of recursion increases, the accuracy and
complexity of the agent differs more compared to the accuracy and complexity
of the corresponding meaning function. Noteworthy is that the complexity and
accuracy of the sRSA agents increase with recursion depth, while the complexity
and accuracy of the corresponding meaning functions decrease. Hence, as the
reasoning depth increases, the ambiguity of the learned meaning function increases.
The efficiency and accuracy of the agents and meaning functions should be the
same at depth 0 and 1 since both correspond to the sender S1pw|mq.

to 5, where depth 0 indicates a sender interacting with a literal listener, and we set
α “ 5. During the evaluation, the context given to the agents will be the entire
Munsell chart, as was done for human representations. Each configuration of agents
is averaged over 100 different random seeds. We update the neural networks using
standard stochastic gradient descent, with the learning rate set to 0.001. The agents
were trained for 10 000 updates using a batch size of 100. We compare the results to
a pure reinforcement learning baseline (RL) with the meaning function of the same
size as that of the pragmatic agents, but with linear activation in the output layer.
The RL sender performs a softmax operation over words given a color, and the RL
listener performs a softmax operation over colors given a word. This color game is
similar to the ones considered in Kågebäck et al. (2020) and Chaabouni et al. (2021)
with the difference that the sender observes the context in our setup.

In Figure 3.6, we observe the efficiency of the agents when performing 2 recursions.
The RSA agents develop less efficient communication compared to the sRSA agents
and the RL baseline. The sRSA agents develop communication closer to the optimal
frontier compared to the RL and RSA agents, illustrating that pragmatic agents with
appropriate utility functions develop efficient communication. It is worth highlighting
that the RSA and RL agents account for the structure of the color space in their
non-contextual meaning functions, i.e. in their neural networks. The results in
Figure 3.6 thus suggest that the efficiency of the sRSA agents cannot be mimicked by
just a graded, or fuzzy, meaning function, but is due to explicitly accounting for the
structure in the recursion. We also note that the non-pragmatic RL baseline learns
color naming systems which are more efficient than the pragmatic RSA agents, and
that these systems are also close to the information-theoretic frontier (the efficiency
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Figure 3.6: The efficiency of the RSA and sRSA agents trained using a recursion
depth of 2 compared to the RL baseline.

of RL agents w.r.t. this objective was first reported in Chaabouni et al. (2021)).
In Figure 3.5 we see how the complexity and accuracy of the agents and the

meaning function changes as the agents are allowed to perform deeper reasoning
during learning. As the recursion depth increases, the sRSA agents develop more
complex and accurate behavior while ambiguity emerges to a higher extent in the
corresponding meaning functions, see Figure 3.5b. Hence, the sRSA agents are able to
use ambiguity as a tool to reach greater communicative efficiency. This is consistent
with the observations in Peloquin et al. (2020) and the claims in Piantadosi et al.
(2012) that ambiguity is associated with efficient communication. The ambiguity
of the meaning function increases with recursion depth, also for the RSA agents,
which can be seen in Figure 3.5a. However, for the RSA agents we also observe that
the accuracy and complexity of the agent decreases after a few recursions, which
seems to indicate that a small number of recursions is better for developing accurate
behavior compared to higher recursion depth when using RSA.

4 Conclusions

In this work we have explored pragmatic reasoning in a structured signaling game
in the color domain. We explored human representations from the World Color
Survey, as well as representations learned by artificial agents using reinforcement
learning that incorporate pragmatic reasoning. We have seen that, in both cases,
incorporating the domain structure in the reasoning process greatly improves the
efficiency in the standard information-theoretic sense, compared to using the standard
RSA recursion.
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We believe that an interesting future direction is to extend the idea of a structured
signaling game and sRSA to more complex environments. An example is a scenario
where meanings constitute several different features, and not just one, as considered
here. Another interesting future direction, pointed out by one of the reviewers, is to
explore scenarios where agents do not share the exact same notion of similarity.
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Abstract

It has been argued that semantic systems reflect pressure for efficiency,
and a current debate concerns the cultural evolutionary process that
produces this pattern. We consider efficiency as instantiated in the
Information Bottleneck (IB) principle, and a model of cultural evolution
that combines iterated learning and communication. We show that
this model, instantiated in neural networks, converges to color naming
systems that are efficient in the IB sense and similar to human color
naming systems. We also show that some other proposals such as iterated
learning alone, communication alone, or the greater learnability of convex
categories, do not yield the same outcome as clearly. We conclude that the
combination of iterated learning and communication provides a plausible
means by which human semantic systems become efficient.

Keywords: cultural evolution; iterated learning; efficient communi-
cation; semantic categories; color naming

1 Introduction
Semantic categories vary across languages, and it has been proposed that this
variation can be explained by functional pressure for efficiency. On this view, systems
of categories are under pressure to be both simple and informative (e.g. Rosch (1978)),
and different languages arrive at different ways of solving this problem, yielding
wide yet constrained cross-language variation. There is evidence for this view from
semantic domains such as kinship (Kemp and Regier 2012), container names (Xu,
Regier, et al. 2016), names for seasons (Kemp, Gaby, et al. 2019), indefinite pronouns
(Denić, Steinert-Threlkeld, et al. 2022), modals (Imel and Steinert-Threlkeld 2022),
and numeral systems (Xu, Liu, et al. (2020), and relatedly Denić and Szymanik
(2024)). Zaslavsky, Kemp, et al. (2018) gave this proposal an independent theoretical
foundation by grounding it in an information-theoretic principle of efficiency, the
Information Bottleneck (IB) principle (Tishby et al. 1999); they also showed: (1)
that color naming systems across languages are efficient in the IB sense, (2) that
optimally IB-efficient systems resemble those found in human languages, and (3) that
the IB principle accounts for important aspects of the data that had eluded earlier
explanations. Subsequent work has shown that container naming (Zaslavsky, Regier,
et al. 2019), grammatical categories of number, tense, and evidentiality (Mollica et al.
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2021), and person systems (Zaslavsky, Maldonado, et al. 2021) are also efficient in
the IB sense.

In a commentary on this line of research, Levinson (2012) asked how semantic
systems evolve to become efficient, and suggested that an important role may be
played by iterated learning (e.g. Scott-Phillips and Kirby (2010)). In iterated learning,
a cultural convention is learned by one generation of agents, who then provide training
data from which the next generation learns, and so on. The convention changes as
it passes through generations, yielding a cultural evolutionary process. The idea
that such a process could eventually lead to efficient semantic systems has since
been explored and broadly supported. Xu, Dowman, et al. (2013) showed that
chains of human learners who were originally given a randomly generated color
category system eventually produced systems that were similar to those of the World
Color Survey (Cook et al. (2005)), a large dataset of color naming systems from
110 unwritten languages. Although this study did not directly address efficiency,
Carstensen et al. (2015) drew that link explicitly: they reanalzyed the data of Xu,
Dowman, et al. (2013) and showed that the color naming systems produced by
iterated learning not only became more similar to those of human languages – they
also became more informative; the same paper also presented analogous findings for
semantic systems of spatial relations. In response, Carr et al. (2020), building on
earlier work by Kirby et al. (2015) and others, argued that iterated learning primarily
contributes simplicity rather than informativeness — but that a bias for simplicity
can nonetheless sometimes result in an increase in informativeness. Overall, there
is support for the idea that iterated learning can lead to efficient semantic systems,
with continuing debate over how and why. There are also recent proposals that
non-iterated learning – e.g. in the context of a dyad of communicating agents (e.g.
Kågebäck et al. (2020), Chaabouni et al. (2021), and Tucker et al. (2022)), or in a
single agent without communication (e.g. Steinert-Threlkeld and Szymanik (2020)
and Gyevnar et al. (2022)) – can explain efficient color naming systems. In particular,
Steinert-Threlkeld and Szymanik (2020) argued that “[e]ase of learning explains
semantic universals” (see also Gentner and Bowerman (2009)). To support this
claim, Steinert-Threlkeld and Szymanik (2020) first noted that earlier proposals (e.g.
Gärdenfors (2000) and Jäger (2010)) had argued for the importance of convexity in
conceptual space as an important constraint on human semantic categories; they then
demonstrated the greater learnability, in a neural network, of convex as opposed to
non-convex color categories. These recent contributions, and the present one, build on
an important line of earlier work using agent-based simulations cast as evolutionary
models, without explicitly addressing efficiency (e.g. Steels and Belpaeme (2005),
Belpaeme and Bleys (2005), Dowman (2007), Jameson and Komarova (2009), and
Baronchelli et al. (2010)).

Several of these prior studies have engaged efficiency in the IB sense, and two
are of particular relevance to our own work. Chaabouni et al. (2021) showed that a
dyad of neural network agents, trained to discriminate colors via communication,
eventually arrived at color naming systems that were highly efficient in the IB sense.
However, these systems did not always resemble those of human languages: their
categories “depart to some extent from those typically defined by human color naming”
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(Chaabouni et al. (2021), p. 11 of SI). Tucker et al. (2022) explored a similar color
communication game, and found that their neural agents gravitated to color naming
systems that are both essentially optimally efficient in the IB sense, and similar
to human color naming systems from the WCS. They achieved this by optimizing
an objective function that is based on the IB objective. To our knowledge, earlier
work leaves open whether both high IB efficiency and similarity to human languages
can be achieved through processes and principles that are independent of IB. We
explore that question here. We also wish to establish here whether such independent
principles may address the one case in which IB-optimal color naming systems deviate
to some extent from empirical observation: the case of 3-term systems (Zaslavsky,
Kemp, et al. 2018, p. 7941). Overall, we wished to ascertain whether a natural model
of cultural evolution might account both for the many cases in which IB matches
the data, and for the one case in which it deviates from the data to some extent.

A natural candidate model of cultural evolution was advanced by Kirby et al.
(2015), and the ideas we pursue here build on that general model. Specifically,
Kirby et al. (2015) proposed a model of cultural evolution that interleaves two kinds
of learning touched on above: (1) learning that occurs during transmission of a
linguistic system from one generation to the next, and (2) learning that occurs
during communication among agents within a single generation. That formulation
allowed them to isolate the effect of each of the two kinds of learning, and to examine
their combination. They were interested in particular in what evolutionary forces
could give rise to compositional structure of the sort found in human language. In
computational simulations and experiments with human participants, they found
that transmission from one generation to the next exerted pressure for simplicity,
that within-generation communication exerted pressure for informativeness — and
that only the two forces operating together gave rise to compositional structure.
Here, we apply the same general cultural evolutionary model to a different question,
that of color naming systems in human languages.

In what follows, we first demonstrate that there exist many possible color naming
systems that are highly efficient in the IB sense, but do not closely resemble human
systems. The fact that there exist such efficient-yet-not-human-like systems is not
surprising given that IB is a non-convex optimization problem (Tishby et al. 1999;
Zaslavsky, Kemp, et al. 2018), but appreciating the prevalence of such systems may
be helpful in understanding how Chaabouni et al. (2021) achieved high IB efficiency
with systems that deviate from human ones. We then show that the general cultural
evolutionary model of Kirby et al. (2015), instantiated in neural networks (Ren
et al. 2020), gravitates toward efficiency and, within the class of efficient systems,
gravitates more toward human color naming systems than toward others. Finally, we
show that iterated learning alone, communication alone, and convexity alone, do not
yield that outcome as clearly. We conclude that iterated learning and communication
jointly provide a plausible explanation of how human color naming systems become
efficient.
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WCS Gaussian (similar) Gaussian (dissimilar)

Figure 4.1: Top: Color naming stimulus grid (left), and stimuli plotted in CIELAB
space (right). Bottom: 9 color naming systems displayed relative to the grid. The
left column contains color naming systems from 3 languages in the World Color
Survey (WCS). Colored regions indicate category extensions, and the color code
used for each category is the mean of that category in CIELAB color space. The
named color categories are distributions, and for each category we highlight the
level sets between 0.75´1.0 (unfaded area) and 0.3´0.75 (faded area). The middle
and right columns contain randomly-generated Gaussian systems of complexity
comparable to that of the WCS system in the same row. The middle column
shows random Gaussian systems that are similar to the WCS system in the same
row. The right column shows random Gaussian systems that are dissimilar to the
WCS system in the same row; at the same time, there is no other WCS system
that is more similar to this Gaussian system.

2 Not all efficient systems are human-like
We considered a natural class of artificial color naming systems (see e.g. Abbott et al.
(2016) and Zaslavsky, Garvin, et al. (2022)). In this class, each named category
w is modeled as a spherical Gaussian-shaped kernel with mean (prototype) xw in
3-dimensional CIELAB color space (Figure 4.1, top right panel), such that the
distribution over words w given a color chip c at location xc in CIELAB space is:

Spw|cq9e´η||xc´xw||22 (2.1)

where η ą 0 is a parameter controlling the precision of the Gaussian kernel. We then
generated artificial color category systems with K “ 3 . . . 10 categories each, by first
sampling η randomly from a uniform distribution over the interval r0.001, 0.005s for
each system, using the same η for all categories in a given system, and then sampling
the prototype xw of each category w randomly, without replacement, from a uniform
distribution over the cells of the color naming grid shown in the top left panel of
Figure 4.1. This figure shows the same set of colors as in the top right panel, but
now in a 2-D array. In analyzing these systems, we draw on four quantities from the
IB framework as presented by Zaslavsky, Kemp, et al. (2018) and reviewed below
in Appendix A: the complexity of a category system, the accuracy of a category
system, ϵ (a measure of the inefficiency of a category system, or its deviation from
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the theoretical limit of efficiency), and gNID (a measure of dissimilarity between
two category systems). We noted that the range of complexity (in the IB sense) for
systems in the World Color Survey (WCS) was r0.84, 2.65s, and also noted that our
random model sometimes generated systems outside this range; we only considered
artificial systems with complexity within this range, and generated 100 such systems
for each K; we refer to these randomly-generated systems as Gaussian systems.

The lower panels of Figure 4.1 compare natural color naming systems to artificial
Gaussian systems. The leftmost column shows three attested color naming systems
from the World Color Survey (WCS), from top to bottom: Bété (iso: bev, Côte
d’Ivoire), Colorado / Tsafiki (iso: cof, Ecuador), and Dyimini (iso: dyi, Côte d’Ivoire).
The middle column shows randomly-generated Gaussian systems that are similar
to the WCS system in the same row, and the rightmost column shows Gaussian
systems that are dissimilar to the WCS system in the same row but of about the
same complexity. In each row, the rightmost system, which is dissimilar to the WCS
system in that row, is nonetheless more similar to that WCS system than to any
other WCS system; this means it is dissimilar to all WCS systems. Thus, there
exist Gaussian systems that are quite similar to naturally occurring systems, and
other Gaussian systems that are quite dissimilar to naturally occurring systems. To
quantify this pattern, we separated the Gaussian systems into two groups, based
on whether their gNID to the closest WCS system exceeded a threshold. We set
this threshold to the smallest gNID between systems in the left (WCS) and right
(Gaussian dissimilar) columns of Figure 4.1, which is 0.29. We then grouped all
Gaussian systems with gNID to the closest WCS system below this threshold into one
group, Gaussian[S] (for similar to WCS), and the other Gaussian systems into another
group, Gaussian[D] (for dissimilar to WCS). We found that 38% of the Gaussian
systems fell in Gaussian[D] and they spanned the complexity range r0.86, 2.26s. Thus,
a substantial proportion of the randomly-generated Gaussian systems are at least as
dissimilar to WCS systems as are those in the right column of Figure 4.1.

Figure 4.2 shows the results of an IB efficiency analysis of the WCS systems
(replicating Zaslavsky, Kemp, et al. (2018), and assuming their least-informative
prior), and also of our Gaussian systems. It can be seen that all Gaussian systems
are highly efficient in the IB sense – i.e. they are close to the IB curve that defines
the theoretical limit of efficiency in this domain. Mann-Whitney U tests revealed
(1) that the Gaussian systems tend to exhibit greater efficiency (lower inefficiency ϵ)
than do the WCS systems in the same complexity range (P ! .001), and (2) that the
Gaussian[D] systems, which are dissimilar to WCS systems, are also more efficient
than WCS systems (P ! .001, one-sided), and slightly to marginally more efficient
than Gaussian[S] systems (P “ .019 one-sided; Bonferroni corrections do not change
the qualitative outcome).1 These findings suggest that there is a substantial number
of color naming systems that are dissimilar to those of human languages, yet more
efficient than them. This in turn may help to make sense of Chaabouni et al.’s 2021

1Throughout the paper we use one-sided tests when comparing different sets of color naming
systems to the Gaussian systems. The reason for this is that we are interested in knowing whether
various systems generated by an evolutionary process exceed a random baseline when it comes to
either efficiency or similarity to human systems.



134 3. Iterated learning and communication

Figure 4.2: Efficiency of color naming, following Zaslavsky et al., 2018. The
dashed line is the IB theoretical limit of efficiency for color naming, indicating the
greatest possible accuracy for each level of complexity. The color naming systems
of the WCS are shown in blue, replicating the findings of Zaslavsky et al., 2018.
Our randomly-generated Gaussian systems are shown in orange. The Gaussian
systems are often closer to the IB curve than the WCS systems are. The inset
shows the 9 color systems of Figure 4.1, with the dissimilar Gaussian systems
shown as +.

finding that their evolutionary process yielded systems that were highly efficient but
not particularly similar to human ones: our analysis illustrates that there are many
such systems. Given this, we wished to determine whether a natural evolutionary
process would yield both efficiency in the IB sense, and similarity to human systems.

3 Iterated learning and communication
As noted above, iterated learning (e.g. Kirby (2001) and Smith et al. (2003)) is
a cultural evolutionary process in which a cultural convention is learned first by
one generation of agents, who then pass that convention on to another generation,
and so on — and the convention changes during inter-generational transmission.
Some of the work we have reviewed above addresses iterated learning (e.g. Levinson
(2012) and Carstensen et al. (2015)). However other work we have reviewed instead
addresses cultural evolution through communication within a single generation (e.g.
Kågebäck et al. (2020), Chaabouni et al. (2021), and Tucker et al. (2022)). We
wished to explore the roles of both iterated learning and communication, and so
we adopted the general approach of Kirby et al. (2015), which involves both in a
way that allows the role of each to be highlighted. Specifically, we adopted the
recently proposed neural iterated learning (NIL) algorithm (Ren et al. 2020), which
can be seen as a neural network implementation of the approach of Kirby et al.
(2015). In the NIL algorithm, illustrated in overview in Figure 4.3, artificial agents
are implemented as neural networks that communicate with each other within a
generation, and transmit information across generations. Cultural convention (in our
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Figure 4.3: Illustration of the neural iterated learning (NIL) algorithm (Ren et al.,
2020). The algorithm alternates between communication within a generation, and
learning that is iterated across generations. The speaker (S) in each generation
learns from the speaker in the previous generation, and communicates with the
listener (L) in their own generation.

case, a color naming system) evolves both from within-generation communication
and from inter-generational transmission, as the convention is iteratively passed
down through generations of artificial agents, with each new generation learning
from the previous one.2

In the NIL algorithm, each generation t (for time step) consists of two artificial
agents, a speaker St and a listener Lt. The NIL algorithm operates in three phases.
(1) In the first phase, the learning phase, both agents are exposed to the naming
convention of the previous generation. This is done by first training the speaker
St, using cross-entropy loss, on color-name pairs generated by the speaker of the
previous generation. The listener Lt is then trained via reinforcement learning in a
few rounds of a signaling game while keeping St fixed: that is, the speaker learns
from the previous generation, and the listener then learns from the speaker. We had
the agents play the signaling game used by Kågebäck et al. (2020), in which the
speaker is given a color chip c, sampled from a prior distribution over color chips,
and produces a category name describing that color. The listener then attempts to
identify the speaker’s intended color based on the name produced, by selecting a
color chip ĉ from among those of the naming grid shown in Figure 4.1. A reward is
given to the listener depending on how perceptually similar the selected chip is to the
original color, following Equation 3.1 below. (2) In the second phase, the interaction
phase, the agents play the same signaling game but this time both agents receive a
joint reward and update their parameters during communicative interactions. (3) In
the third phase, the transmission phase, color-name pairs are generated by sampling
colors from the prior distribution and obtaining names for them from the speaker
St. These color-name pairs are then passed on to the next generation of agents. In
all three phases, color chips are sampled according to the least-informative prior of

2NIL, or neural iterated learning, is therefore not an entirely informative name for this process,
as it does not explicitly label the important element of within-generation communication.
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Zaslavsky, Kemp, et al. (2018). Algorithm 4.1 presents a schematic overview of the
NIL algorithm, and Ren et al. (2020) present a detailed description. Both the NIL
algorithm and the setting explored in Kågebäck et al. (2020) build on important
earlier work exploring the emergence of communication in neural network models (e.g.
Foerster et al. (2016), Havrylov and Titov (2017), Lazaridou et al. (2017), and
Mordatch and Abbeel (2018)).

In our experiments, we represent both the speaker and listener as neural networks
with one hidden layer consisting of 25 units with a sigmoidal activation function
followed by a softmax output layer. Individual colors are represented in 3-dimensional
CIELAB space when supplied as input to the speaker, and category names as one-hot
encoded vectors. The speaker’s network parameterizes a conditional distribution over
categories given a color. To produce an utterance during communication, the speaker
samples a category from this distribution and conveys it to the listener. The input to
the listener is the category uttered by the speaker, represented as a one-hot encoded
vector. The output of the listener’s network is a probability distribution over the
stimulus set, and the listener produces a guess by sampling from this distribution. For
the reinforcement learning parts of NIL we use the classical algorithm REINFORCE
(Williams 1992). For the transmission phase we sample 300 color-name pairs with
replacement, out of the 330 chips in the entire stimulus set; this ensures that the new
generation will have seen examples from most of color space but it is impossible for
them to have seen all color-name pairs. To optimize the neural networks, we use the
optimizer Adam (Kingma and Ba 2014), both in the learning and interaction phase,
with learning rate 0.005 and batch size 50. For each phase in the NIL algorithm we
take 1000 gradient steps. We stop the NIL algorithm either after 250 generations
or once the maximum difference in IB complexity and accuracy over the ten latest
generations is smaller than 0.1 bit, i.e. when the last ten generations are all within
a small region of the IB plane. Note that NIL is not guaranteed to converge in
the IB plane and might oscillate back and forth. This is because the transmission
dataset is finite and randomly sampled, so the next generation might only be able to
approximately reconstruct the naming system of the previous generation.

The reward function: The reward function of Kågebäck et al. (2020), which we
use here, takes the form:

rpc, ĉq “ e´γ||xc´xĉ||22 (3.1)

where c is the chip sampled by the speaker, ĉ is the chip chosen by the listener as
their interpretation of the chip intended by the speaker, xc is the location in CIELAB
space of chip c, and γ is a parameter that controls how precise the listener’s choice ĉ
has to be. As γ Ñ 8 the above reduces to a binary reward function, i.e. the listener
has to perfectly reconstruct the color to get any reward. On the other hand, if γ “ 0
the reward function is vacuous in the sense that any possible reconstruction yields a
reward of 1. We use γ “ 0.001 which was originally used by Kågebäck et al. (2020)
and motivated by the analysis in Regier et al. (2007).
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Algorithm 4.1 Neural Iterated Learning
1: Initialize dataset D1 uniformly at random
2: for t “ 1... do
3: Learning Phase
4: Randomly initialize St and Lt.
5: Train St on Dt using stochastic gradient descent and cross-entropy loss.
6: Play signaling game between St and Lt and update parameters of only Lt

using the rewards.
7: Interaction Phase
8: Play signaling game between St and Lt and update parameters of both agents

using the rewards.
9: Transmission Phase

10: Create transmission dataset Dt`1 consisting of color-name pairs, pc, wq by
sampling colors from the prior ppcq and providing them as input to St.

11: end for

4 Analyses and results

4.1 Iterated learning and communication operating together

For each vocabulary size K “ 3 . . . 10 and K “ 100 we ran 100 independent instances
of the NIL algorithm. For each instance, we considered the color naming system
of the last speaker to be the result of that instance — we call these systems IL+C,
as they are the result of iterated learning plus communication, and we evaluated
the IL+C systems in the IB framework. As can be seen in Figure 4.4 (top panel),
the IL+C systems are highly efficient in the IB sense: they lie near the theoretical
efficiency limit (median inefficiency ϵ “ 0.07), and they are no less efficient than
the random Gaussian systems we considered above (median inefficiency ϵ “ 0.09),
which in turn are more efficient than the human systems of the WCS (see above).
Thus, iterated learning plus communication as formalized in the NIL algorithm
leads to semantic systems that are efficient in the IB sense. This is consistent with
existing proposals: the reward during the signaling game favors informativeness
(higher reward for similar colors, following Kågebäck et al. (2020)), and it has been
argued that iterated learning favors simplicity (e.g. Kirby et al. (2015) and Carr et al.
(2020)). Interestingly, all the resulting systems lie within the complexity range of
the WCS systems even though NIL could theoretically produce much more complex
systems, especially when initialized with K “ 100.

Xu, Dowman, et al. (2013) examined how color naming systems evolved through
chains of iterated human learners without within-generation communication, but with
the number of categories constrained. They found that these lab-evolved systems
tended to gravitate toward color naming systems that were similar to those of the
WCS, and we wished to know whether the same was true of computational agents in
the NIL framework. For each IL+C system, we determined the dissimilarity (gNID)
between that system and the most similar (lowest gNID) WCS system. We also
determined the analogous quantity (dissimilarity to the most similar WCS system)
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Figure 4.4: Efficiency of the (top) IL+C, (bottom left) IL, and (bottom right)
C evolved color naming systems (orange dots), in each case compared with the
natural systems of the WCS (blue dots). The black triangle indicates the end
state of one run, shown in the inset color map. The histograms above each figure
indicate the proportion of systems at the corresponding complexity level.

for each random Gaussian system. Figure 4.5 shows that IL+C systems tend to be
similar to WCS systems to a greater extent than Gaussian systems do, and this was
confirmed by a one-sided Mann-Whitney U test pP ! .001q. Thus, the NIL process
tends to gravitate toward human (WCS) systems to a greater extent than a random
but efficient baseline, the Gaussian systems.3

We also asked whether NIL would transform efficient systems that were dissimilar
to those of the WCS (namely those of Gaussian[D]) into comparably efficient systems
that were more similar to the WCS. To test this, we initialized the NIL algorithm
with a Gaussian[D] system, ran the NIL algorithm, and compared the initial system
to the one that resulted from NIL. Figure 4.6 illustrates the beginning and end points
of this process for a small set of systems, and shows that NIL transforms systems
that are efficient but unlike the WCS into systems that are similar to particular WCS

3We found that 14% of the IL+C experiments ran for the maximum number of generations
without converging in the IB plane. Excluding these systems from the analysis and only considering
the IL+C runs that did converge does not change the qualitative outcome of the analysis above.
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Figure 4.5: Distribution of dissimilarity to WCS systems (minimum gNID to any
WCS system), shown for IL+C and Gaussian systems. The Gaussian systems
include both Gaussian[S] and Gaussian[D]. Evolved IL+C systems tend to be more
similar to attested WCS systems than are random but highly efficient Gaussian
systems.

systems. Figure 4.7 shows that the same general pattern also holds over Gaussian[D]
systems taken as a whole. For each Gaussian[D] system, we created an NIL chain,
and initialized the chain with that Gaussian[D] system. For each such NIL chain,
we measured the dissimilarity (gNID) of its initial Gaussian[D] system to the most
similar WCS system, and the gNID of the end result of NIL to its most similar
WCS system. We found that NIL tends to transform Gaussian[D] systems into
systems that are more similar to the human systems of the WCS. The mean gNID
to WCS was 0.38 before NIL and 0.25 after, and the reduction in dissimilarity to
WCS after applying NIL was significant (one-sided (paired) Wilcoxon signed-rank
test, n “ 302, T “ 1113, P ! .001). The median inefficiency of Gaussian[D] systems
is ϵ “ 0.09 and the median inefficiency of the results of NIL is slightly lower at
ϵ “ 0.07, meaning that NIL made the already-efficient Gaussian[D] systems slightly
more efficient (one-sided (paired) Wilcoxon signed-rank test, n “ 302, T “ 7716,
P ! .001). Thus, NIL moves already-efficient systems closer to the attested systems
of the WCS, while maintaining and even slightly improving efficiency. Finally, it is
noteworthy that NIL with 3 terms converges to a system that is similar to a 3-term
WCS system (see the top row of Figure 4.6), because 3-term systems are the one
case in which IB optimal systems qualitatively diverge from human data (Zaslavsky,
Kemp, et al. (2018), p. 7941; see also Figure 4.8 below and accompanying text).
Thus, this is a case in which NIL appears to provide a better qualitative fit to the
data than IB does.
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Before NIL After NIL WCS

Figure 4.6: NIL transforms efficient color naming systems to become more similar
to the WCS. In each row, the left column shows a Gaussian[D] system that was
used to initialize NIL, the middle column shows the result of running NIL from
that initialization state, and the right column shows a WCS system (from top to
bottom: Bété, Colorado, Dyimini) that is similar to the NIL result.
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Figure 4.7: NIL tends to transform efficient Gaussian[D] color naming systems to
become more similar to the WCS. The difference score is dissimilarity to WCS
(minimum gNID to any WCS system) before NIL, minus the same quantity after
NIL. Values above zero (marked by the dashed vertical red line) indicate that NIL
has brought a system closer to the systems of the WCS. There is a clear trend
towards positive values, indicating that NIL tends to transform already-efficient
systems into systems that are more human-like.

4.2 Iterated learning alone, and communication alone
So far, we have seen evidence that the Kirby et al. (2015) model of cultural evolution,
as implemented in the NIL algorithm, may provide a plausible model of the cultural
evolutionary process by which human color naming systems become efficient. We
have referred to the result of the full NIL algorithm as IL+C systems, because these
systems result from both iterated learning (IL) and communication (C). This raises
the question whether iterating learning alone, or communication alone, would yield
comparable results.

To find out, following Kirby et al. (2015), we ran two variants of this culural
evolutionary algorithm. One variant included only iterated learning but no commu-
nication (i.e. lines 6-8 of Algorithm 4.1 were omitted). The other variant included
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communication but no iterated learning (i.e. there was only one pass through the main
loop, which stopped at line 9); this is exactly the experiment that was performed by
Kågebäck et al. (2020). We refer to the results of the iterated-learning-only algorithm
as IL (for iterated learning), and the results of the communication-only algorithm
as C (for communication). For the C experiments, we trained each dyad of agents
for at most 250, 000 batches but stopped the training once the agents satisfied the
stopping criterion used for IL+C. Note that Kågebäck et al. (2020) only trained each
dyad for 50, 000 steps without any early stopping criterion. We found that 99.6% of
the C experiments converged before reaching the maximum number of batches. All
the IL experiments converged in the IB plane before reaching 250 generations.

Comparison of the three panels of Figure 4.4 reveals that there are qualitative
differences in the profiles of the systems produced by the 3 variants of the NIL
algorithm (IL+C, IL, and C). We have already seen that IL+C systems (top panel)
are both efficient and similar to human systems; we also note that they lie within
roughly the same complexity range as the human systems of the WCS. In contrast,
the IL systems (bottom left panel) skew toward lower complexity than is seen in
human systems, and in fact about 6% of the IL systems lie at the degenerate point
p0, 0q in the IB plane, at which there is a single category covering the entire color
domain. This skew toward simplicity is compatible with the view (e.g. Kirby et al.
(2015) and Carr et al. (2020)) that iterated learning provides a bias toward simplicity.
At the same time, the IL systems are not only simple but also quite efficient (i.e.
informative for their level of complexity), which is in turn compatible with Carstensen
et al.’s 2015 claim that iterated learning can produce informativeness, and with Carr
et al.’s 2020 proposal that a process that primarily drives toward simplicity can
sometimes also result in greater informativeness. Finally, the C systems (bottom
right panel) show the opposite pattern: a bias toward higher informativeness, at the
price of higher complexity, extending well above the complexity range observed in
the human systems of the WCS.

Taken together, these results suggest that iterated learning alone over-emphasizes
simplicity, communication alone over-emphasizes informativeness, and iterated learn-
ing with communication provides a balance between the two that aligns reasonably
well with what is observed in human color naming systems. Overall, these results
suggest that iterated learning plus communication is a more plausible model of the
cultural evolutionary process that leads to efficient human color naming systems
than is either iterated learning alone, or communication alone. These findings
echo those of Kirby et al. (2015), who found that compositional structure evolved
in a communicative system only under the combination of iterated learning and
within-generation communication, and not under either process taken alone.

4.3 The distribution of systems produced by IL+C

To further explore the distribution of systems produced by IL+C we grouped all
IL+C systems from the main experiment based on the number of color terms, K, in
the systems. For each number of color terms, we clustered the systems using spectral
clustering (Luxburg 2007) with gNID as the dissimilarity measure. To find the
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Figure 4.8: Representative IL+C systems (left column), WCS systems (middle
column) and IB optimal systems (right column), with 3, 4, 5, and 6 color terms
(rows). The % under each IL+C system indicates the percentage of IL+C systems
in the corresponding cluster. The WCS systems are, from top to bottom: Nafaanra
(iso: nfr, Ghana), Culina (iso: cul, Peru, Brazil), Waorani (iso: auc, Ecuador),
Jicaque (iso: jic, Honduras), Berik (iso: bkl, Indonesia), and Kalam (iso: kmh,
Papua New Guinea).

appropriate number of clusters for each number of color terms, we performed spectral
clustering with C “ 2, 3, 4 clusters and reported the clustering with the highest
silhouette score (Rousseeuw 1987) which is standard in clustering. Since spectral
clustering does not return cluster centers, we take the system that minimizes the
average pairwise gNID to all other systems in the cluster as a representative sample
of that cluster. The resulting systems, for K “ 3...6, are presented in Figure 4.8
along with some WCS systems and the optimal IB systems. The number under each
representative IL+C system indicates the percentage of systems contained in the
corresponding cluster.

Interestingly, we see that the IL+C systems with three color terms appear in two
clusters: a larger cluster that corresponds reasonably well to 3-term systems observed
in the WCS, and a smaller cluster that is similar to the unattested IB optimal
system. This suggests that there are two different optima that IL+C converges
to: one human-like and the other corresponding to the IB optimal solution. The
fact that the cluster corresponding to the IB solution is much smaller suggests that
IL+C has a bias toward systems that are more similar to the WCS systems. These
results are compatible with the idea that the attested 3-term systems represent a
local optimum that is easier to reach through a process of cultural evolution than is
the IB optimal solution. Related ideas have also been proposed in connection with
kin terminologies, e.g. Epling et al. (1973), Kemp and Regier (2012).

For the four term systems we observe that 93% of the IL+C systems end up in
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Figure 4.9: Hue-based artificial systems, with 3 (left) and 10 (right) categories.

clusters that correspond fairly well with the optimal IB system and one of the WCS
systems shown in Figure 4.8. The last 7% of the systems end up in a cluster that
does not map clearly onto the WCS data. For both K “ 5 and K “ 6 we observe
that at least one of the IL+C clusters seems to correspond fairly well with systems
in the WCS and with IB optimal systems.

4.4 Learnability and convexity

As mentioned above in our review of relevant literature, an influential idea holds that
human categories form convex regions in a given conceptual space (Gärdenfors 2000).
In the case of color, a natural space for testing this claim is CIELAB space (Figure
4.1, top right panel), and Jäger (2010) has shown that the natural color categories
found in the WCS are convex sets in CIELAB space — supporting the convexity
claim of Gärdenfors (2000) in the domain of color. More recently, Steinert-Threlkeld
and Szymanik (2020) have extended this line of thought by arguing that convex
color categories are easier to learn than are non-convex ones, and that this greater
learnability helps to explain why human color categories tend to be convex.

We sought to situate this argument relative to the one we have been advancing here.
Intuitively, it seems plausible that the artificial Gaussian systems we have considered
above should also be convex, because they are based on spherical Gaussian-shaped
kernels — but as we have seen, many of these Gaussian systems are quite dissimilar to
the human systems of the WCS. This suggests that convexity may be a necessary but
not sufficient criterion for characterizing human-like semantic categories, a suggestion
with which proponents of the convexity argument are comfortable (P. Gärdenfors, G.
Jäger, personal communication; see also Gärdenfors (2024)). To probe this possibility
further, we assessed the convexity, the (non-iterated) learnability, and the efficiency
of the WCS systems, the randomly-generated Gaussian systems, and an additional
set of baseline systems that draw category distinctions based only on hue. These
hue-based systems were designed to be convex but not similar to human systems.
Specifically, for vocabulary sizes K “ 3...10 we divided the Munsell chart into equally
sized categories by grouping together color chips based on their hue only; in case
equally sized categories were not possible we created K ´ 1 equally sized categories
and added the remaining color chips to the last category. Example hue-based systems
are shown in Figure 4.9: these are deterministic systems in which hue column fully
determines the category to which a given chip belongs.

To assess the convexity of a color naming system, we adopted the measure of
Steinert-Threlkeld and Szymanik (2020). They took the degree of convexity of a
single category, named by a word w, to be:
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dccpwq :“ |w|

|ConvHullpwq|

where |¨| is the size of a set, i.e. the number of color chips in that set, and ConvHullpwq

is the convex hull, in CIELAB space, of those chips in category w. Thus, dccpwq

gives us the proportion of those chips in the convex hull of category w that are also
in the category w itself. For a perfectly convex category, this proportion will be 1.
Steinert-Threlkeld and Szymanik (2020) then defined the degree of convexity of an
entire system S of categories to be the average, weighted by category size, of dccpwq

across categories w in S:

dcpSq :“
ř

wPS |w| ¨ dccpwq
ř

wPS |w|

A dcpSq value of 1 corresponds to a system of perfectly convex color categories.4
To assess the (non-iterated) learnability of a color naming system, we took a

system to be easily learned to the extent that a neural network learner generalizes
the system well — that is, to the extent that the learned system matches the one
from which training data was sampled. We assessed this by considering only the
learning phase of the NIL algorithm, and considering only the speaker’s learning
(specifically lines 3-5 of Algorithm 4.1), leaving all parameters unchanged. We then
measured the gNID between the learned system and the system from which training
data was drawn. During training, the agent sees only part of the entire system, so
this gNID is a measure of how well the agent generalizes from the data it receives.
To mitigate possible effects caused by sampling the training dataset, we performed
each experiment over 10 independent runs and averaged.

We assessed the convexity, the learnability, and the IB efficiency of the (natural)
WCS, (artificial) Gaussian, and (artificial) hue-based systems. Convexity results are
shown in Figure 4.10 (left panel), and learnability results are shown in Figure 4.10
(right panel). All three types of system are highly convex, with the artificial Gaussian
and hue-based systems being slightly more convex than the natural WCS systems
– perhaps because the natural systems include noise. Moreover, in line with the
expectation that convex systems will be learnable, all three types of system show good
generalization, with no advantage for the natural WCS systems over the artificial
Gaussian and hue-based systems. These results confirm that convex systems tend
to be highly learnable, and also highlight that something beyond convexity and
(non-iterated) learnability must play a role in differentiating human systems from
artificial semantic systems that do not resemble them. Finally, Figure 4.11 shows
that artificial hue-based systems are not especially efficient — in contrast with
artificial Gaussian systems and natural WCS systems. We take these results to

4This method assumes deterministic rather than probabilistic category membership. When
applying this method to probabilistic systems, we first converted the probabilistic system to a
deterministic one by assigning each chip to the modal category for that chip; we then applied this
convexity measure to the resulting deterministic system.
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Figure 4.10: Left panel: Convexity. Convexity for different types of category
systems. The natural systems of the WCS, artificial Gaussian systems, and
artificial hue-based systems, are all highly convex when compared with a baseline
of randomly generated systems in which each color chip is assigned to a category
selected uniformly at random (labeled “Baseline”). We generated such baseline
random systems with k “ 3...10 color categories and for each k we drew 10 random
systems. Right panel: Learnability. Ease of learning is assessed by how well a
learner generalizes, and generalization is measured by gNID between a learned
system and the system from which training data was drawn. Artificial Gaussian
and hue-based systems show generalization that is no worse than that of natural
WCS systems.
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Figure 4.11: Some convex and learnable category systems are not efficient. Effi-
ciency of the artificial hue-based systems (green dots), compared with that of the
artificial Gaussian (orange dots) and natural WCS (blue dots) systems.

suggest that convexity and learnability provide a partial answer to the question of
what characterizes human semantic categories — and that a fuller answer may be
provided by iterated learning and communication operating together, as a model of
cultural evolution that leads toward efficient and human-like systems of semantic
categories.
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5 Discussion

We have shown (1) that there exists a reasonably sized class of color naming systems
that are highly efficient in the IB sense but dissimilar from human systems; (2) that
iterated learning plus communication, as captured in the NIL algorithm, leads to color
naming systems that are both efficient in the IB sense and similar to human systems,
and (3) that iterated learning alone, communication alone, and convexity alone, do
not yield that result as clearly. These findings help to answer some questions, and
also open up others.

As we have noted, the existence of highly efficient systems that do not align with
human ones is not in itself surprising. IB is a non-convex optimization problem
(Tishby et al. 1999; Zaslavsky, Kemp, et al. 2018), so multiple optima and near-
optima are to be expected. However we feel that our identification of such systems
may nonetheless be helpful, because it highlights just how many such systems exist,
and just how dissimilar from human systems they sometimes are. In particular, this
helps to make sense of Chaabouni et al.’s 2021 finding that simulations of cultural
evolution can lead to color naming systems that exhibit high IB efficiency but deviate
to some extent from human systems — something that we also sometimes find, as seen
above in Figure 4.8. This in turn highlights the importance of identifying cultural
evolutionary processes that tend to avoid these outcomes and instead converge toward
systems we find in human languages.

We have argued that iterated learning plus communication, as proposed by Kirby
et al. (2015) and implemented in the NIL algorithm (Ren et al. 2020), is such a process,
and that it provides a better account of cross-language color naming data than either
iterated learning alone, or communication alone. Our findings supporting this idea
thus generalize Kirby et al.’s 2015 argument, which concerned compositionality in
language, to a different aspect of language. Our findings also confirm a proposed
resolution to a tension in the literature. As we have noted, Carstensen et al. (2015)
argued that iterated learning alone can lead to informative semantic systems, whereas
Carr et al. (2020) argued that iterated learning provides a bias for simplicity, and
communication provides a bias for informativeness. However Carr et al. (2020) also
found that a bias for simplicity — such as that provided through iterated learning

— can produce systems that are informative as well as simple, and they suggested
that this helps to resolve the tension. Specifically, they suggested that an increase in
informativeness through iterated learning, as observed by Carstensen et al. (2015),
can result from a process (iterated learning) the primary outcome of which is a drive
toward simplicity. Our finding that both forces are needed to account for the data
aligns with Carr et al.’s 2020 central position. In addition, our finding that iterated
learning alone also converges to efficient and thus informative systems — although
often to overly simple ones — qualitatively replicates the findings of Carstensen
et al. (2015), in a way that confirms Carr et al.’s 2020 proposed resolution of the
tension: iterated learning does lead to simplicity, as suggested, but it also leads to
informativeness to some extent.

It is natural to think of cultural evolution as a means by which the abstract
computational goal of optimal efficiency might be attained or approximated. The
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optimally efficient color naming systems on the IB curve closely resemble those
in human languages (Zaslavsky, Kemp, et al. 2018), and the IL+C systems are
likewise highly efficient and similar to those in human languages. However, as noted
above, there is an exception to this pattern. In the case of 3-term systems, the IB
optimal system qualitatively differs from the color naming patterns found in the WCS
(Zaslavsky, Kemp, et al. (2018), p. 7941), whereas IL+C systems often qualitatively
match attested 3-term systems (recall the top rows of Figures 4.6 and 4.8). Thus, in
this one case, it appears that human languages do not attain the optimal solution
or something similar to it, and instead attain a somewhat different near-optimal
solution that is apparently more easily reached by a process of cultural evolution.

A major question left open by our findings is exactly why we obtain the results we
do. The general model of Kirby et al. (2015), as implemented in the NIL algorithm,
is just one possible cultural evolutionary process, and we have seen that that process
accounts for existing data reasonably well. It makes sense intuitively that NIL strikes
a balance between the simplicity bias of iterated learning and the informativeness
bias of communication — but what is still missing is a finer-grained sense for exactly
which features of this detailed process are critical, vs. replaceable by others, and
what the broader class of such processes is that would account well for the data
(e.g. Tucker et al. (2022)). A related direction for future research concerns the
fact that the evolutionary process we have explored here is somewhat abstract and
idealized, in that agents communicate with little context or pragmatic inference.
Actual linguistic communication is highly context-dependent, and supported by rich
pragmatic inference — it seems important to understand whether our results would
still hold in a more realistic and richer environment for learning and interaction. Our
agents also have designated roles: an agent acts either as a speaker or as a listener,
and a direction for future research is to extend our setting to a more realistic model
in which agents can alternate between the two roles. In addition, in our idealized
setup a given agent interacts with only one other agent, whereas in human social
interaction, communication within a generation happens in social networks such that
an agent interacts with many other agents throughout their lifetime. An interesting
direction for future research would be to explore what biases are introduced by
certain population structures and whether varying the population structure can
account for the variance observed in human color naming data.

Another important issue concerns the situating of this evolutionary account
relative to the classic account of Berlin and Kay (1969). Our work here inherits,
from the work of Zaslavsky, Kemp, et al. (2018) on which we build, an important
connection to that earlier classic account: a trace along the IB curve reveals a
sequence of color naming systems that gradually increase in complexity and that
recapitulate the Berlin and Kay (1969) hierarchy, while also capturing aspects of
competing accounts (MacLaury 1997; Levinson 2000). However, the mapping of that
connection to fine-grained empirical data concerning language change over historical
time has only recently begun (Zaslavsky, Garvin, et al. 2022), and a connection to
the evolutionary model we explore here has not to our knowledge been attempted.
Finally, we have focused on the semantic domain of color, but the ideas we have
pursued are not specific to color, so another open question is the extent to which our
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results generalize to other semantic domains.
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Figure 4.12: The framework of Zaslavsky et al. (2018). A speaker communicates
a specific referent to a listener by producing a word. The IB principle provides
formal specifications of various quantities associated with this communicative act;
see text for details. The figure is from Zaslavsky et al. (2021).

A The framework of Zaslavsky et al. (2018)
Zaslavsky, Kemp, et al. (2018) cast the notion of efficiency in terms of an independent
information-theoretic principle, the Information Bottleneck (IB) principle (Tishby
et al. 1999). In the framework of Zaslavsky, Kemp, et al. (2018), a semantic system
is considered efficient to the extent that it achieves an optimal tradeoff between the
complexity of a system, and the accuracy of communication that that system supports.
These notions are grounded in the communicative scenario illustrated in Figure 4.12,
in which a speaker attempts to communicate with a listener about referents in a given
domain universe U , in our case the domain of color. Here, the speaker considers a
specific target color t P U and holds it in mind in the form of a mental representation
mt, which is a probability distribution over color space (CIELAB; recall Figure 4.1),
centered at t. To communicate that mental representation, the speaker utters a word
w, drawn from a language-specific probabilistic encoder qpw|mtq that maps from
meanings mt to words w; this encoder qpw|mtq is the semantic system by which the
speaker and listener communicate. The listener then produces, on the basis of the
uttered word w, a mental representation m̂w that is the listener’s reconstruction of
the speaker’s original representation mt. Casting this simple communicative scenario
in terms of the IB principle results in formal definitions of four quantities that are
central to the IB formalization of efficiency, and on which we rely in our work:
complexity, accuracy, ϵ, and gNID.

The complexity of a semantic system q is given by IqpMt; W q, i.e. the mutual
information between the speaker’s mental representation mt and the word w used to
express it. The greater the complexity of the system, the more information the word
w carries about the speaker’s mental representation mt. The accuracy of a semantic
system is given by IqpW ; Uq, which can be shown to capture the similarity of the
speaker’s and listener’s mental representations (see Zaslavsky, Kemp, et al. (2018)).
The core idea of efficiency in this framework is to obtain the greatest accuracy
possible for a given level of complexity — i.e. to communicate as precisely as possible
for a given amount of information sent. An optimally efficient semantic system q is
thus one that minimizes the IB objective function:

Fβrqs “ IqpMt; W q ´ βIqpW ; Uq
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where β ě 0 is a tradeoff parameter that controls the relative weight given to
complexity and accuracy. Those systems q˚ that minimize this objective function for
different values of β yield the IB theoretical limit of efficiency; that is, these are the
systems with the greatest possible accuracy for each level of complexity. Zaslavsky,
Kemp, et al. (2018) showed that human color naming systems achieve near-optimal
efficiency in the IB sense, and that fully IB-optimal systems often closely correspond
to color naming systems in human languages.

In our analyses, we also make use of two other quantities from the framework
of Zaslavsky, Kemp, et al. (2018). First, ϵq measures the inefficiency of a semantic
system, or its deviation from optimal efficiency, as described on p. 7939 of their
article:

ϵq “
1
β

`

Fβrqs ´ F˚
β

˘

Here F˚
β is the optimal value of the IB objective for a given value of β, and β is

chosen to minimize the difference Fβrqs ´ F˚
β for a given semantic system q. Finally,

we follow Zaslavsky, Kemp, et al. (2018) in using their gNID measure to measure
the dissimilarity between two semantic systems, as described on p. 7942 of their
article. This measure assumes that a single meaning m is assigned a name by each
of two semantic systems q1 and q2: W1 „ q1pw1|mq and W2 „ q2pw2|mq. Then the
dissimilarity between q1 and q2 is given by:

gNIDpW1, W2q “ 1 ´
IpW1; W2q

max tIpW1; W 1
1q, IpW2; W 1

2qu
.

Here, W 1
i corresponds to another independent speaker using the system qi.
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clustered arms

Emil Carlsson , Fredrik D. Johansson, Devdatt Dubhashi.

Abstract

We propose algorithms based on a multi-level Thompson sampling
scheme, for the stochastic multi-armed bandit and its contextual variant
with linear expected rewards, in the setting where arms are clustered. We
show, both theoretically and empirically, how exploiting a given cluster
structure can significantly improve the regret and computational cost
compared to using standard Thompson sampling. In the case of the
stochastic multi-armed bandit we give upper bounds on the expected
cumulative regret showing how it depends on the quality of the clustering.
Finally, we perform an empirical evaluation showing that our algorithms
perform well compared to previously proposed algorithms for bandits
with clustered arms.

1 Introduction

In a bandit problem, a learner must iteratively choose from a set of N actions, also
known as arms, in a sequence of T steps as to minimize the expected cumulative
regret over the horizon T (Lai and Robbins 1985). Inherent in this setup is an
exploration-exploitation tradeoff where the learner has to balance between exploring
actions she is uncertain about in order to gain more information and exploiting
current knowledge to pick actions that appears to be optimal.

In this work, we consider versions of the standard multi-armed bandit problem
(MAB) and the contextual bandit with linear rewards (CB) where there is a clustering
of the arms known to the learner. In the standard versions of these problems the
cumulative regret scales with number of arms, N , which becomes problematic when
the number of arms grows large (Bubeck and Cesa-Bianchi 2012). Given a clustering
structure one would like the exploit it to remove the explicit dependence on N and
replace it with a dependence on the given clustering instead. A motivating example is
recommender systems in e-commerce where there may be a vast amount of products
organized into a much smaller set of categorizes. Users my have strong preferences for
certain categorizes which yields similar expected rewards for recommending products
from the same category.
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Our Contributions. We propose algorithms based on a multi-level Thompson
sampling (Thompson 1933) scheme for the stochastic multi-armed bandit with
clustered arms (MABC) and its contextual variant with linear expected rewards and
clustered arms (CBC). For the MABC, we provide regret bounds for our algorithms
which completely removes the explicit dependence on N in favor for a dependence
on properties of the given clustering. We perform an extensive empirical evaluation
showing both how the quality of the clustering affects the regret and that our
algorithms are very competitive with recent algorithms proposed for MABC and
CBC. Noteworthy is that the empirical evaluation shows that our algorithms still
performs well even in the case where our theoretical assumptions are violated.

2 Stochastic multi-armed bandit with clustered
arms

We consider the MABC. As in the standard MAB problem we have a set of arms A of
cardinality N . At each time step t ą 0 the learner must pick an arm at P A after which
an instant stochastic reward, rtpatq, drawn from some distribution, rt „ Dat , with an
unknown mean EDat

rrts “ µat . The goal of the learner is to maximize its expected
cumulative reward over a sequence of T time steps or equivalently, to minimize
its expected cumulative regret ErRT s w.r.t the optimal arm a˚ “ arg maxaPA µa in
hindsight, RT :“

řT
t“1 rtpa

˚q ´ rtpatq.
In the MABC, the learner has, in addition, access to a clustering of the N arms

which may be used to guide exploration. We will consider two types of clustering:

Disjoint Clusters The N arms are partitioned into a a set of clusters K such that
each arm a P A is associated to exactly one cluster.

Hierarchical Clustering The N arms are organized into a tree T of depth L such
that each arm is associated with a unique leaf of the tree.

We will show in Section 2.2 and 2.4 that when rewards are drawn from Bernoulli
distributions, rt „ Bpµaq, with unknown parameters µa, the learner can exploit
the known clustering to greatly improve the expected cumulative regret compared
to the regret achievable with no knowledge of the cluster structure (under certain
assumptions on the quality of the clustering).

2.1 Thompson sampling for MABC
In the celebrated Thompson sampling (TS) algorithm for MAB with Bernoulli
distributed rewards a learner starts at time t “ 0 with a prior belief Betap1, 1q over
possible expected rewards, θa P r0, 1s, for each a P A. At time t, having observed Stpaq

number of successful pr “ 1q plays and Ftpaq the number of unsuccessful pr “ 0q plays
of arm a, the learner’s posterior belief over possible expected rewards for arm a is
BetapStpaq, Ftpaqq, where S0paq “ F0paq “ 1. At each time step t, the learner samples
an expected reward for each arm θa „ BetapStpaq, Ftpaqq and then acts greedily w.r.t.
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Algorithm 5.1 TSC
Require: A, K

Set S0 “ F0 “ 1 for all a and C.
for t “ 1, ..., T do

For each cluster C sample θC „ BetapStpCq, FtpCqq and pick Ct “ arg maxCPK θC

For each a P Ct sample θa „ BetapStpaq, Ftpaqq.
Play arm at “ arg maxaPCt

θa and collect reward rt.
Update St`1patq “ Stpatq ` rt , Ft`1patq “ Ftpatq ` p1 ´ rtq.
Update St`1pCtq “ StpCtq ` rt and Ft`1pCtq “ FtpCtq ` p1 ´ rtq.

end for

the sample means, i.e. the learner plays the arm at “ arg maxaPA θa. Given a reward
rt the learner updates the posterior of the played arm at as St`1patq “ St ` rt and
Ft`1patq “ Ftpatq ` p1 ´ rtq,. The posteriors of the arms not played are not updated.

Given a clustering of the arms into a set of clusters K, we introduce a natural
two-level bandit policy based on TS, Algorithm 5.1. In addition to the belief for
each arm a, BetapStpaq, Ftpaqq, the learner also keeps a belief over possible expected
rewards BetapStpCq, FtpCqq for each cluster C P K. At each t, the learner first use
TS to pick a cluster - that is, it samples θC „ BetapStpCq, FtpCqq for each cluster
C P K and then considers the cluster Ct “ arg maxCPK θC . The learner then samples
θa „ BetapStpaq, Ftpaqq for each a P Ct and plays the arm at “ arg maxaPCt

θa. Given
a reward rt the learner updates the beliefs for at and Ct as follows St`1patq “ Stpatq`rt

, Ft`1patq “ Ftpatq ` p1 ´ rtq, St`1pCtq “ StpCtq ` rt and Ft`1pCtq “ FtpCtq ` p1 ´ rtq.
We extended this two-level scheme to hierarchical clustering of depth L, by

recursively applying TS at each level of the tree, in Algorithm 5.2. The learner starts
at the root of the hierarchical clustering, T , and samples an expected reward for each
of the sub-trees, T i

1 spanned by its children, i “ 1, ..., from BetapStpT i
1 q, FtpT i

1 qq. The
learner now traverses down to the root of the sub-tree satisfying T i

1,t “ arg maxT i
1

θT i
1
.

This scheme is recursively applied until the learner reaches a leaf, i.e. an arm at,
which is played. Given a reward rt, each belief along the path from the root to at is
updated using a standard TS update.

Algorithm 5.1 and 5.2 are not restricted to Bernoulli distributed rewards and can
be used for any reward distribution with support r0, 1s or for unbounded rewards by
using Gaussian prior and likelihood in TS, as done for the standard MAB in Agrawal
and Goyal (2017).

2.2 Regret analysis TSC

Assume that we have a clustering of N Bernoulli arms, into a set of clusters K. For
each arm a, let µa denote the expected reward and let a˚ be the unique optimal arm
with expected reward µ˚. We denote the cluster containing a˚ as C˚. We denote the
expected regret for each a as ∆a :“ µ˚ ´ µa and for each cluster C P K, we define
µC “ maxaPC µa, µ

C
“ minaPC µa and ∆C “ µ˚ ´ µC .
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Algorithm 5.2 HTS
Require: A, T

Set S0pT i
l q “ F0pT i

l q “ 1 for each sub-tree T i
l .

for t “ 1, ..., T do
Set Tt “ T .
while Tt is not a leaf do

For each sub-tree T i
l spanned by the children of Tt sample θT i

l
„

BetapStpT i
l q, FtpT i

l qq.
Set Tt “ arg max θT i

l
.

end while
Play the arm at corresponding to the leaf Tt and collect the reward rt.
Perform a TS update on each StpT i

l q, FtpT i
l q on the path to at.

end for

For each cluster C P K we define distance dC to the optimal cluster C˚ as
dC “ minaPC˚,âPC µa ´ µâ and the width wC as wC “ µC ´ µ

C
, let w˚ denote the

width of the optimal cluster.

Assumption 2.1 (Strong Dominance). For C ‰ C˚, dC ą 0.

This assumption is equivalent to what is referred to as tight clustering in Bounef-
fouf et al. (2019) and strong dominance in Jedor et al. (2019). In words, we assume
that, in expectation, every arm in the optimal cluster is better than every arm in
any suboptimal cluster.

In order to bound the regret of TSC we will repeatedly use the following seminal
result for the standard MAB case (without clustering) from Kaufmann et al. (2012).
Here, we denote the Kullback-Leibler divergence between two Bernoulli distributions
with means µ1 and µ2 as KLpµ1, µ2q and the natural logarithm of T as log T .

Theorem 2.1 ((Kaufmann et al. 2012)). In the standard multi-arm bandit case with
optimal arm reward µ˚, the number of plays of a sub–optimal arm a using TS is
bounded from above, for any ϵ ą 0, by

p1 ` ϵq
1

KLpµa, µ˚q
plog T ` log log T q ` Op1q.

Our plan is to apply Theorem 2.1 in two different cases: to bound the number
of times a sub-optimal cluster is played and to bound the number of plays of a
sub-optimal arm in the optimal cluster. However, the theorem not directly applicable
to the number of plays of a sub-optimal cluster, NC,T , since the reward distribution
is drifting as the policy is learning about the arms within C. Nevertheless, we can
use a comparison argument to bound the number of plays of a sub-optimal cluster
by plays in an auxiliary problem with stationary reward distributions and get the
following lemma.
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Lemma 2.2. For any ϵ ą 0 and assuming strong dominance, the expected number
of plays of a sub-optimal cluster C at time T using TSC is bounded from above by

ErNC,T s ď
1 ` ϵ

KLpµC , µ
C˚q

plog T ` log log T q ` Op1q.

We can use Lemma 2.2 to derive the following instance-dependent regret bound
for TSC.

Theorem 2.3. For any ϵ ą 0, the expected regret of TSC under the assumption of
strong dominance is bounded from above by

p1 ` ϵq

˜

ÿ

C‰C˚

∆C

KLpµC , µ
C˚q

`
ÿ

aPC˚

∆a

KLpµa, µ˚q

¸

log T ` oplog T q.

We can derive an instance-independent upper bound from Theorem 2.3 which
only depends on number of clusters, number of arms in the optimal cluster and the
quality of the clustering . Now, define γC as the ratio between width of the optimal
cluster and the distance of C to the optimal cluster:

γC :“
#

w˚{dC , C ‰ C˚

0, otherwise

and let γ :“
ř

C γC{K. We arrive at the following result.

Theorem 2.4. Assume strong dominance and let A˚ be the number of arms in the
optimal cluster and K the number of sub-optimal clusters. The expected regret of
TSC is bounded from above by ErRT s ď O

`
a

pA˚ ` Kp1 ` γqqT log T
˘

.

Clustering Quality and Regret. As a sanity check, we note that if the expected
rewards of all arms in the optimal cluster are equal we have γ “ 0 and the bound in
Theorem 2.4 reduces to the bound for the standard MAB in (Agrawal and Goyal
2017) with K ` 1 arms. On the other hand, if the optimal cluster has a large width
along with many sub-optimal clusters with a small distance to the optimal cluster
γ becomes large and little is gained from the clustering. Two standard measures
of cluster quality are the (a) the maximum diameter/width of a cluster and (b)
inter-cluster separation. We see that for our upper bound, only the width of the
optimal cluster and the separation of other clusters from the optimal cluster are
important. These dependencies are consistent with the observations in Pandey et al.
(2007), which suggest that high cohesiveness within the optimal cluster and large
separation are crucial for achieving low regret. However our analysis is more precise
than their observations and we also provide rigorous regret bounds.

2.3 Lower bounds for disjoint clustering
In the case of Bernoulli distributed rewards we can derive the following lower bound
for the instance dependent case using the pioneering works of Lai and Robbins (1985).
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Theorem 2.5. The expected regret for any policy, on the class of bandit problems with
Bernoulli distributed arms clustered such that strong dominance holds, is bounded
from below by

lim
TÝÑ8

inf ErRT s

log T
ě

ÿ

aPC˚

∆a

KLpµa, µ˚q
`

ÿ

C‰C˚

∆C

KLpµ
C

, µ˚q

We compare the lower bound in Theorem 2.5 to our instance-dependent upper
bound in Theorem 2.3 and we see that the regret suffered in TSC from playing
sub-optimal clusters asymptotically differs from the corresponding term in the lower
bound by a factor depending on the width of the clusters since

KLpµC , µ
C˚q “ KLpµ

C
` wC , µ˚

´ w˚
q ď KLpµ

C
, µ˚

q.

Thus, as the width of the clusters goes to zero, the regret of TSC approaches the
lower bound. However, as also discussed in Jedor et al. (2019) it is unclear whether
the lower bound derived in Theorem 2.5 can be matched by any algorithm since it
doesn’t depend at all on the quality on the given clustering and assumes the optimal
policy to always play the worst action in sub-optimal clusters.

The following minimax lower bound follows trivially from the Ωp
?

NT q mini-
max lower bound for standard MAB (Auer, Cesa-Bianchi, Freund, et al. 1998) by
considering the two cases: where all clusters are singletons and all arms are in one
cluster.

Theorem 2.6. Let K be the number of sub-optimal clusters and let A˚ be the number
of arms in the optimal cluster. The expected regret for any policy, on the class of
bandit problems with Bernoulli distributed arms clustered such that strong dominance
holds, satisfies ErRT s ě Ωp

a

pA˚ ` KqT q.

Let d ą 0 be the smallest distance between any sub-optimal and the optimal
cluster. We compare Theorem 2.6 to the upper bound in Theorem 2.4 and observe
that

a

pA˚ ` KqT ď
a

pA˚ ` p1 ` γqKqT ď

b

`

1 ` 1
d

˘
a

pA˚ ` KqT . Hence, our
upper bound in Theorem 2.4 matches the lower bound up to logarithmic factors and
a constant depending on the separation of the clusters.

2.4 Regret analysis HTS
Assume we have N Bernoulli arms clustered into a tree T and for simplicity we
assume it to be perfectly height-balanced. We denote the sub-tree corresponding
to node j on level i as T j

i and on each level i we denote the sub-tree containing
the optimal arm as T ˚

i . Let T j
i`1, j P r1, K˚

i s, denote sub-trees spanned by the child
nodes of the root in T ˚

i , where K˚
i is the number of children of the root in T ˚

i .
W.l.o.g let j “ 1 be the sub-tree, T 1

i`1, that contains the optimal action. For each
sub-tree T j

i we define ∆j
i :“ µ˚ ´ maxaPT j

i
µa and di

j :“ minaPT ˚
i

µa ´ maxaPT j
i

µa.

Assumption 2.2 (Hierarchical Strong Dominance). We assume dj
i ą 0, @i, j except

for T ˚
i .
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Under this assumption the results in Theorem 2.3 can be naturally extended to
HTS by recursively applying Theorem 2.3.

Theorem 2.7. Assuming hierarchical strong dominance. For any ϵ ą 0, the expected
regret of HTS is upper bounded by

p1 ` ϵq

¨

˝

L´1
ÿ

i“0

K˚
i

ÿ

j“2

∆j
i

pdi
jq2 `

ÿ

aPT ˚
L

1
∆a

˛

‚log T ` oplog T q.

For L “ 0 Theorem 2.4 reduces to the instance-dependent bound for standard TS
and for L “ 1 it reduces to the bound for TSC presented in Theorem 2.3. Hierarchical
structures and bandits have previously been studied in the prominent works Coquelin
and Munos (2007) and Bubeck, Munos, et al. (2011) which assumes there is a known
smoothness. Here we do not make such assumptions and Theorem 2.7 instead relies
on an assumption regarding the ordering of the tree.

Plausibility of Hierarchical Strong Dominance. The hierarchical strong
dominance assumption is perhaps too strong for a general hierarchical clustering
but it might be reasonable for shallow trees. One example is in e-commerce where
products can be organized into sub-categories and later categories. A user might
have a strong preference for the sub-category “Football” in the category “Sports”.

3 Contextual bandit with linear rewards and clus-
tered arms

In this section, we consider the MABC problem in its contextual variant with linear
expected rewards (CBC). As in the classic CB, there is for each arm a P A an, a
priori, unknown vector θa P Rd. At each time t, the learner observes a context vector
xt P Rd and the expected reward for each arm a at time t, given that the learner has
observed xt, is Errtpaq|xts “ xJ

t θa. Similar to MABC, the learner has, in addition,
access to a clustering of the N arms and for CBC we assume the arms to be clustered
into a set of K disjoint clusters.

For the CBC we extend TSC, Algorithm 5.1, to LinTSC, as defined in Algorithm
5.3. At each level of LinTSC, we use the Thompson sampling scheme developed for
standard CB in Agrawal and Goyal (2012).

4 Experimental results

4.1 Stochastic multi-armed bandit
Strong dominance. We generate synthetic data, for which strong dominance
holds, in the following way: We have N arms and each arm i is Bernoulli distributed
with reward probability pi. The arms are clustered into K clusters and we have
A˚ arms in the optimal cluster. For the remaining N ´ A˚ arms we assign each
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Algorithm 5.3 LinTSC
Require: v ą 0

Set Bc “ 1d, fc “ 0d, µc “ 0d, Bc,i “ 1d, fc,i “ 0d, µc,i “ 0d

for t “ 1, ..., T do
Observe context xt

Sample θc „ N pµJ
c xt, vxJ

t B´1
c xtq

Consider cluster k “ arg maxc θc

Sample θk,i „ N pµJ
k,ixt, vxJ

t B´1
k,i xtq

Play arm a “ arg maxi θk,i

Observe reward rt and update Bk “ Bk `xtx
J
t , Bk,a “ Bk,a `xtx

J
t , fk “ fk `rxt,

fk,i “ fk,i ` rxt, µk “ B´1
k fk and µk,i “ B´1

k,i fk,i .
end for

arm to one of the sub-optimal clusters with uniform probability. We set the reward
probability of the best arm in the optimal cluster to be 0.6 and for the worst arm in
the optimal cluster we set it to be 0.6 ´ w˚. For the remaining A˚ ´ 2 arms in the
optimal cluster we draw the reward probability from Up0.6 ´ w˚, 0.6q for each arm.
In each sub-optimal cluster we set the probability of the best arm to be 0.6 ´ w˚ ´ d
and for the worst arm to be 0.5 ´ w˚ ´ d, the probability for the remaining arms are
drawn from Up0.5 ´ w˚ ´ d, 0.6 ´ w˚ ´ dq. The optimal cluster will then have a width
of w˚ and the distance from each sub-optimal cluster to the optimal cluster will be d.
In Figures 5.1a–5.1e, we run TS and TSC on the same instances for T “ 3000 time
steps, varying the different instance parameters and plotting the cumulative regret
of each algorithm at the final time step T . For each set of parameters we evaluate
the algorithms using 50 different random seeds and the error bars corresponds to
˘1 standard deviation. In Figures 5.1a and 5.1b, we observe that the cumulative
regret scales depending on the clustering quality parameters d and w˚ as suggested
by our bounds in Section 2.2—that is, the cumulative regret of TSC decreases as d
increases and increases as w˚ increases. In Figure 5.1c, we observe that the linear
dependence in N for TS is changed to a linear dependence in K and A˚, Figures
5.1d and 5.1e, which greatly reduces the regret of TSC compared to TS as the size
of the problem instance increases. In Figure 5.1e we also see that as the number of
arms in the optimal cluster, A˚, increases to be a substantial amount of the total
number of arms, the gain from using TSC compared to TS vanishes.

Hierarchical strong dominance. We generate a bandit problem by first uniformly
sample N Bernoulli arms from Up0.1, 0.8q followed by recursively sorting and merging
the arms into a balanced binary tree, which has the hierarchical strong dominance
property. In Figure 5.1f, we ran the algorithms for T “ 3000 over 50 random seeds
and illustrated how the cumulative regret at time T of HTS changes as we alter
the depth L of the given tree and the total number of arms N . Note that L “ 0
corresponds to TS and L “ 1 corresponds to TSC. We observe that as the size of
the problem instance grows, i.e increasing N , using more levels in the tree becomes
more beneficial due to aggressive exploration scheme of HTS. Hence, once we realize
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Figure 5.1: Strong and Hierarchical Strong Dominance.

that one sub-tree is better than the other we discard all arms in the corresponding
sub-optimal sub-tree. Connecting back to Theorem 2.7 we see that HTS gets only a
dependence Oplog2 Nq in the number of arms when using the full hierarchical tree in
Figure 5.1f.

Violation of assumptions. In a real world setting, assuming that strong dom-
inance and especially hierarchical strong dominance holds completely is often too
strong. We thus evaluate our algorithms on instances for which these assumptions
are violated. We generate N arms by for each arm i we sample a value xi „ Up0, 1q.
We cluster the arms into K clusters, based on the values txiu, using K-means. The
reward distribution of each arm i is a Bernoulli distribution with mean fpxiq where
fpxq “ 1

2psin 13x sin 27x ` 1q. This function is illustrated in the supplementary
material, Appendix A, and has previously been used to evaluate bandit algorithms in
Bubeck, Munos, et al. (2011), the smoothness of the function ensures arms within the
same cluster to have similar expected rewards, on the other hand the periodicity of sin
yields many local optima and the optimal cluster won’t strongly dominate the other
clusters. On these instances, we benchmark TSC against two another algorithms
proposed for MABC, UCBC (Pandey et al. 2007; Bouneffouf et al. 2019) and TSMax
(Zhao et al. 2019). We also benchmark against UCB1 (Auer, Cesa-Bianchi, and
Fischer 2002) and TS which both considers the problem as a standard MAB, making
no use of the clustering. We run the algorithms on two different instances, one with
N “ 100 and K “ 10 and the other one with N “ 1000 and K “ 32. For each
instance we run the algorithms on 100 different random seeds and we present the
results in Figure: 5.2a and 5.2b, the error bars corresponds to ˘1 standard deviation.
TSC outperforms the other algorithms on both instances and especially on the larger
instance where there is a big gap between the regret of TSC and the regret of the
other algorithms. In order to test HTS we generate an instance, as above, with
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(a) K-means instance with
N “ 100, K “ 10.
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(b) K-means instance with
N “ 1000, K “ 32.
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(c) Hierarchical clustering
with k-means.
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(d) CBC with k “ 20, n “ 400,
ϵ “ 0.5
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(e) CBC with k “ 30, n “ 900,
ϵ “ 0.5
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(f) CBC with k “ 30, n “ 900,
ϵ “ 0.1

Figure 5.2: CBC and violation of assumptions in MABC.

N “ 5000 and K “ 15 and construct a tree by recursively breaking each cluster up
into 15 smaller clusters using k-means. In Figure 5.2c we show the performance of
HTS for two different levels, L “ 2, 3, compared to TSC using the clusters at level
L “ 1 in the tree and also compared to the UCT-algorithm (Kocsis and Szepesvári
2006) using the same levels of the tree as HTS. We averaged over 100 random seeds.
The HTS performs well on this problem and is slightly better than TSC while both
HTS and TSC outperforms UCT. We present more empirical results for MABC in
the supplementary material.

4.2 Contextual bandit
We generate contextual data in the same way as in Bouneffouf et al. (2019). We
have K clusters and N arms. Each arm j is randomly assigned to a cluster i. For
each cluster i we sample a centroid θc

i „ N p0, 15q and define a coefficient for each
arm j in the cluster as θj “ θc

i ` ϵv, v „ N p0, 15q. We take the reward of an arm to
be Up0, 2θ⊺j xq where x is the given context. The reward becomes linear and we can
control the expected diameter of a cluster by varying ϵ.

We benchmark LinTSC against the UCB-based counterpart LinUCBC (Bouneffouf
et al. 2019) and the standard algorithms LinTS (Agrawal and Goyal 2012) and
LinUCB (Li et al. 2010), which treats the problem as a standard CB. We ran the
algorithms on three different instances presented in Figures 5.2d, 5.2e and 5.2f, over
25 different random seeds and the error bars corresponds to ˘1 standard deviation.
We run all algorithms with there corresponding standard parameter (v “ 1 for LinTS
and LinTSC, c “ 2 for LinUCB and LinUCBC). We see a clear improvement between
not using the clustering (TS) and using the clustering (TSC). LinTSC performs
slightly better than LinUCBC as the problem becomes larger w.r.t number of arms
and clusters, Figures 5.2e and 5.2f.
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5 Related work
Bandits are now a classical subject in machine learning and recent textbook treat-
ments are Bubeck and Cesa-Bianchi (2012), Slivkins (2019), and Lattimore and
Szepesvári (2020). The MABC and CBC can be considered as natural special cases
of the more general finite-armed structured bandit which is studied in (Lattimore
and Munos 2014; Combes et al. 2017; Gupta, Joshi, et al. 2018; Gupta, Chaudhari,
et al. 2019). To the best of our knowledge, the idea of clustered arms was first
studied in Pandey et al. (2007) and the MABC corresponds to their undiscounted
MDP setup for which the authors propose a general two-level bandit policy and gives
theoretical justifications on how the regret scales depending on the characteristics of
the clustering, but without stating rigorous regret bounds. Bandits with clustered
arms were also recently studied in Bouneffouf et al. (2019) and Jedor et al. (2019)
and both papers prove regret bounds for UCB-styled algorithms in the MABC under
various assumptions on the clustering. Bouneffouf et al. (2019) is the work most
related to ours since they consider a two-level UCB scheme and regret bounds that
exhibits similar dependence on the clustering quality as our bounds. In Zhao et al.
(2019) the authors propose a two-level TS algorithm where the belief of a cluster is
set to the belief of the best performing arm in the cluster so far and the authors
give no theoretical analysis of its regret. Clustered arms also appear in the regional
bandit model (Wang et al. 2018; Singh et al. 2020) under the assumption that all
arms in one cluster share the same underlying parameter. Another model related to
our work is the latent bandit (Maillard and Mannor 2014; Hong et al. 2020) where
the reward distributions depends on a latent state and the goal of the learner is to
identify this state.

Bandits and tree structures are studied using a UCB-styled algorithm for Monte-
Carlo-based planning in the influential work Kocsis and Szepesvári (2006) and later
studied for various bandit problems with smoothness in the seminal works Coquelin
and Munos (2007) and Bubeck, Munos, et al. (2011).

We have based our bandit algorithms on the classical method Thompson sampling
(Thompson 1933) which has been shown to perform well in practise (Chapelle and
Li 2011) and for which rigorous regret analyses recently have been established for
the standard MAB in Kaufmann et al. (2012) and Agrawal and Goyal (2017). The
contextual version of Thompson sampling we use in our two-level scheme for CBC
was originally proposed and analyzed for standard CB in Agrawal and Goyal (2012)
and recently revisited in Abeille and Lazaric (2017).

6 Conclusions
In this paper, we have addressed the stochastic multi-armed bandit problem and the
contextual bandit with clustered arms and proposed algorithms based on multi-level
Thompson sampling. We have shown that our algorithms can be used to drastically
reduce the regret when a clustering of the arms is known and that these algorithms
are competitive to its UCB-based counterparts. We think that the simplicity of our
algorithms and the fact that one can easily incorporate prior knowledge makes them
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well-suited options for bandit problems with a known clustering structure of the
arms. In the future we would like to explore how the regret of TSC behaves under
weaker assumptions on the clustering. We want to determine what are sufficient
properties of the clustering to ensure sub-linear regret of LinTSC.
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A Proofs

A.1 Lemma 2.2
Assume c˚ “ 1 is the cluster containing the optimal arm. We want to bound ErNcs

for some sub-optimal cluster c. Let µ
c

be the smallest mean in cluster c and let θc,t

be the sample drawn from the belief of TSC for c at time t.
If cluster c is played at time t, i.e. Ct “ c, then one of the two events need to

happen
• The sample, θ1,t for cluster 1 satisfy

θ1,t ď µ1 ´

c

6 log t

N1

• Or θ1,t ą µ1 ´

b

6 log t
N1

but Ct “ c anyway.

Thus the expected number of pulls, Nc, of cluster c can be decomposed as

ErNc,T s ď

T
ÿ

t“1
P

˜

θ1,t ď µ1 ´

d

6 log t

N1,t

¸

(A.1)

`

T
ÿ

t“1
P

˜

θc,t ą µ1 ´

d

6 log t

Nc,t

¸

. (A.2)

Let ď denote stochastic domination, i.e. X ď Y iff P pX ě xq ď P pY ě xq @x.
Let Sc,t and Fc,t be the corresponding number of success and fail observations from
cluster c at time t, as in Algorithm 5.1. That is,

Sc,t “ 1 `

Nc,t
ÿ

i

ri (A.3)

Fc,t “ 1 `

Nc,t
ÿ

i

1 ´ ri (A.4)
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where ri is a reward drawn from some arm in cluster c.
To bound the first term in the inequality,

řT
t“1 P

´

θ1,t ď µ1 ´

b

6 log t
N1

¯

, we con-
sider an auxiliary sample θ1

1,t „ BetapS 1
1,t, F 1

1,tq such that

S 1
1,t “ 1 `

N1,t
ÿ

i

r1
i (A.5)

F 1
1,t “ 1 `

N1,t
ÿ

i

1 ´ r1
i (A.6)

where r1
i corresponds to sample drawn from the worse arm in cluster 1 with mean µ1.

It is easy to verify that S 1
c,t ď Sc,t and Fc,t ď F 1

c,t and thus θ1
1,t ď θ1,t

1. Thus we have

P

˜

θ1,t ď µ1 ´

d

6 log t

N1,t

¸

ď P

˜

θ1
1,t ď µ1 ´

d

6 log t

N1,t

¸

and using Lemma 1 from Kaufmann et al. (2012) we can conclude that
8
ÿ

t“1
P

˜

θ1
1,t ď µ1 ´

d

6 log t

N1,t

¸

ď Q ă 8 (A.7)

where Q is some constant.
We proceed in similar fashion to bound

T
ÿ

t“1
P

˜

θc,t ą µ1 ´

c

6 log t

Nc

¸

. (A.8)

We note that

P

˜

θc,t ą µ1 ´

d

6 log t

Nc,t

¸

ď P

˜

θ2
c,t ą µ1 ´

d

6 log t

Nc,t

¸

(A.9)

where θ2
c,t „ BetapS2

c,t, F 2
c,tq with

S2
c,t “ 1 `

Nc,t
ÿ

i

r2
i (A.10)

F 2
c,t “ 1 `

Nc,t
ÿ

i

1 ´ r2
i (A.11)

where r2
i are observations from the best arm in cluster c with mean µc. By the same

reasoning as previously we get θc,t ď θ2
c,t. Applying Theorem 2.1 yields

ErNc,T s ď p1 ` ϵq
log T ` log log T

KLpµc, µ
c˚q

` Op1q (A.12)

for ϵ ą 0.
1To see this, we use the beta-binomial trick F Beta

a,b “ 1 ´ F Binomial
a`b´1,x pa ´ 1q and note that if

a ` b “ c ` d “ q and a ě c then F Binomial
q´1,x pc ´ 1q ď F Binomial

q´1,x pa ´ 1q which gives, using the trick,
F Beta

a,b pxq ď F Beta
c,d pxq, @x P r0, 1s, which implies stochastic dominance.
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A.2 Theorem 2.3
We can decompose the regret into

ErRT s “
ÿ

C‰C˚

ÿ

aPC

∆aErNa,T s `
ÿ

aPC˚

∆aErNa,T s

where the first term consider the regret suffered from playing sub-optimal clusters and
the second term regret suffered from playing sub-optimal arms within the optimal
cluster. The second term can be bounded by just applying Theorem 2.1 for ϵ ą 0

ÿ

aPC˚

∆aErNa,T s ď p1 ` ϵq
ÿ

aPC˚

1
∆a

log T ` oplog T q.

To bound the first term, consider sub-optimal cluster C and let NC,T denote the
number of times we play C. Let a˚

C be the action with highest expected reward in
C. Then for any other a P C, a ‰ a˚

C we can bound the number of plays, Na,TC,T
, by

Theorem 2.1

ErNaC ,NC,T
s ď p1 ` ϵq

1
KLpµa, µa˚q

plog NC,T ` log log NC,T q

` Op1q

and for a˚
C we have

ErNa˚
C ,NC,T

s ď ErNC,T s.

From Lemma 2.2 we know that for ϵ ą 0

ErNC,T s ď p1 ` ϵq
1

KLpµC , µ
C˚q

plog T ` log log T q ` Op1q

and we thus get a log log T dependence on all arms in C except the one with
highest expected reward

ErNa,NC,T
s ď p1 ` ϵq

1
KLpµa, µa˚q

log log T ` oplog log T q

ErNa˚
C ,NC,T

s ď p1 ` ϵq
1

KLpµC , µ
C˚q

log T ` oplog T q.

Therefore we can bound the regret suffered from sub-optimal clusters for any
ϵ ą 0 as

ÿ

C‰C˚

ÿ

aPC

∆aErNa,T s

ď p1 ` ϵqp
ÿ

C‰C˚

∆C

KLpµC , µ
C˚q

log T `

`
ÿ

aPC,a‰a˚

∆a

KLpµa, µa˚q
log log T q ` oplog T q

ď p1 ` ϵq
ÿ

C‰C˚

∆C

KLpµC , µ
C˚q

log T ` oplog T q.
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Combining with the bound on regret within the optimal cluster C˚ yields the
instance-dependent regret bound

ErRT s ď

ď p1 ` ϵq

˜

ÿ

C‰C˚

∆C

KLpµC , µ
C˚q

`
ÿ

aPC˚

∆a

KLpµa, µ˚q

¸

log T

` oplog T q.

A.3 Theorem 2.4
We rewrite ∆C “ dC ` w˚ where w˚ is the width of the optimal cluster and hence
by the definition of γC we have

∆C “ p1 ` γCqdC .

By Pinsker’s inequality we have

KLpµC , µ
C˚q ě 2d2

C

and for arms in the optimal cluster we have

KLpµa, µ˚
q ě 2∆2

a

Thus, the instance-dependent regret bound can be upper-bounded by

1 ` ϵ

2

˜

ÿ

C‰C˚

1 ` γC

dC

`
ÿ

aPC˚

1
∆a

¸

log T ` oplog T q.

Let ∆ ą 0.

• For all clusters C and arms a P C˚ such that dC , ∆a ă ∆, the cumulative regret
from these are upper-bounded by ∆T .

• For each cluster C such that dC ě ∆ the amount of regret suffered from playing
C is Op

1`γC

∆ log T q and for each a P C˚ the regret suffered is Op 1
∆ log T q. In

total this is Op
A˚`Kp1`γq

∆ log T q.

Combining this yields

ErRT s ď Op∆T `
A˚ ` Kp1 ` γq

∆ log T q.

Since this holds @∆ ą 0 we pick ∆ “

b

pA`Kp1`γqq log T
T

and hence,

ErRT s ď O
´

a

pA˚ ` Kp1 ` γqqT log T
¯

.



174 A. Proofs

A.4 Theorem 2.5
We make use of the pioneering work of (Lai and Robbins 1985) which gives that

lim
TÝÑ8

inf ErRT s

log T
ě
ÿ

a

∆a

KLpµa, µ˚q
(A.13)

for a standard multi-armed bandit with Bernoulli rewards. We can decompose the
regret over sub-optimal clusters and sub-optimal arms in the optimal cluster

ErRT s “
ÿ

C‰C˚

ÿ

aPC

∆aErNa,T s `
ÿ

aPC˚

∆aErNa,T s,

and using the fact that the regret suffered within a sub-optimal cluster is bounded
from below by the smallest regret in the cluster

ÿ

aPC

∆aErNa,T s ě ∆C

ÿ

aPC

ErNa,T s.

Now we get the proposed bound by independently bounding each term from below
by Equation:A.13 and using the fact that for any cluster C and any arm a P C we
have

KLpµa, µ˚
q ě KLpµ

C
, µ˚

q.

A.5 Theorem 2.6
First consider the case where all arms are assigned to the same cluster. Any algorithm
needs to at least have a

?
A˚T dependence in the regret otherwise the lower bound

Ωp
?

NT q would be violated.
Secondly, consider the case where all clusters only contain one arm each. We have

that any algorithm needs at least a
?

KT dependence otherwise Ωp
?

NT q would be
violated.

Since
?

K ` A˚ ď
?

K `
?

A˚ it follows that for any algorithm we have

ErRT s ě Ωp
a

pA˚ ` KqT q.

A.6 Theorem 2.7
We decompose the cumulative regret into

RT :“
ÿ

T j
1 ‰T ˚

1

ÿ

aPT j
1

∆aErNa,T s `
ÿ

aPT ˚
1

∆aErNa,T s.

Since strong dominance holds on each level we bound the first sum by
řK˚

0
j“2

∆j
1

p2dj
1q2 log T `

oplog T q using Theorem 2.3, where p2dj
1q2 follows from Pinsker’s inequality for

Bernoulli distributions. We are left with bounding the regret from

ÿ

aPT ˚
1

∆aErNa,T s “

K˚
1

ÿ

j“2

ÿ

aPT j
2

∆aErNa,T s `
ÿ

aPT ˚
2

∆aErNa,T s.
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And we recursively apply Theorem 2.3 to bound the first time like above, until we
reach level L for which we use Theorem 2.1 along with Pinsker’s inequality to get

ÿ

aPT ˚
L

∆aErNa,T s ď p1 ` ϵq
ÿ 1

∆a

log T ` oplog T q

B Empirical evaluation MABC
To give an example where HTS achieves linear regret while TSC exhibits sub-linear
regret we have N “ 500 arms and for each arm ai we draw a vector xi from
xi „ Upr0, 1s2q. We cluster the arms into K “ 20 clusters using k-means and use
that clustering in TSC. We also cluster the arms using agglomerative clustering and
use the resulting tree for HTS and UCT. We take the reward for each arm ai to be
Bernoulli distributed with mean reward

fpx1, x2q “
1
2e´100p0.2´x1q2

`
1
5e´100p0.7´x1q2

`

1
5e´100p0.7´x2q2

,

this function is illustrated in Figure 5.3c. This function is chosen such that there is
a similarity between close arms but as we go higher up in the tree arms in the same
sub-tree may have very different rewards. We run the algorithms for T “ 20 000 and
over 25 random seeds and in Figure 5.4a we see that both UCT and HTS exhibits
linear cumulative regret curve while TSC is still sub-linear since arms clustered
together tends to have similar reward. Hence, using the full tree in this case is a too
aggressive exploration scheme and we see that care has to be taken in HTS when
deciding how deep the hierarchical clustering should be.

We also generated a bandit instance using the function

fpxq “
1
2pe´ 1

0.05 p0.1´xq2
` e´ 1

0.8 p0.9´xq2
q,

illustrated in Figure 5.3b. This function is considered since it is very smooth and one
may assume similar rewards for arms in the same sub-tree of a hierarchical clustering.
We generate N “ 50 arms as before and for TSC we cluster them using k-means with
K “ 5. For HTS and UCT we use agglomerative clustering and consider the full tree.
We run the algorithms for T “ 25 000 and over 25 random seeds and present the
results in Figure 5.4b. We see that for this instance HTS exhibits sub-linear regret
and performs better than TSC, for this clustering. This illustrate that the quality of
the clustering is very important for the regret, especially for HTS.

We also compare TS and TSC on an instance where there is no correlation
between rewards in a cluster. We take N “ 50 arms and divide them into K “ 10
clusters. The reward of each arm is Bernoulli distributed and we draw the expected
reward of each arm from Up0, 1q. The average over 25 random seeds is presented in
Figure 5.4c and as expected we see that TSC has a cumulative regret which is worse
then TS, since the quality of the clustering is bad.
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(a) The function fpxq “
1
2 psin 13x sin 27x ` 1q used
for expected rewards in the
evaluation of TSC and HTS
with violated assumptions
in Section 4.

(b) fpxq “
1
2 pe´ 1

0.05 p0.1´xq
2

`

e´ 1
0.8 p0.9´xq

2
q used for

expected rewards in Figure
5.4b.

(c) 2 dimensional func-
tion used for expected re-
wards in Figure 5.4a.

Figure 5.3: Functions used for evaluating TSC and HTS when theoretical assump-
tions are violated.
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(a) Cumulative regret over the
2-d instance with N “ 500 and
K “ 20.
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(b) Cumulative regret over the
instance with N “ 50 arms
with expected rewards as fpxq
in Figure 5.3b.
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Figure 5.4
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Abstract

We address the problem of identifying the optimal policy with a fixed
confidence level in a multi-armed bandit setup, when the arms are subject
to linear constraints. Unlike the standard best-arm identification problem
which is well studied, the optimal policy in this case may not be deter-
ministic and could mix between several arms. This changes the geometry
of the problem which we characterize via an information-theoretic lower
bound. We introduce two asymptotically optimal algorithms for this
setting, one based on the Track-and-Stop method and the other based
on a game-theoretic approach. Both these algorithms try to track an
optimal allocation based on the lower bound and computed by a weighted
projection onto the boundary of a normal cone. Finally, we provide
empirical results that validate our bounds and visualize how constraints
change the hardness of the problem. 1

1 Introduction
A classical problem in the multi-armed bandit framework is pure exploration (Latti-
more and Szepesvári 2020), where the task of a learner is to answer some query about
a set of actions, also known as arms, by iteratively choosing between the actions and
receiving an immediate reward sampled from a distribution associated with the action.
A very well-studied problem in this context is Best-Arm Identification (BAI), where a
learner is trying to identify the arm with the highest expected reward (Even-Dar et al.
2002; Bubeck et al. 2009; Kalyanakrishnan et al. 2012). The BAI problem has many
applications such as hyper-parameter tuning (Li et al. 2017), clinical trials (Aziz et al.
2021), communication networks (Lindståhl et al. 2022) and user studies (Losada
et al. 2022). However, many real-world scenarios often involve constraints on the
arms that must be satisfied. For example, in recommender systems, one may need
to ensure diversity and genre constraints (Kunaver and Požrl 2017), or fairness of
exposure (Wang, Bai, et al. 2021). In clinical trials, one may need to account for
toxicity constraints of the available treatments (Brannath et al. 2009; Chen 2021;
Demirel et al. 2022). As a result, standard BAI algorithms are not perfectly fitted in
these settings and might have large sample complexity as we show empirically later
on in Section 5.

1Code available at: https://github.com/e-carlsson/constraint-pure-exploration
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In this paper, we introduce the problem of pure exploration in bandits with linear
constraints where the goal is to identify, with a fixed confidence, a policy that maxi-
mizes the expected rewards over arms while satisfying some given constraints. A set
of constraints may change the nature of the pure exploration problem fundamentally.
In particular, the optimal policy may not be deterministic, and finding the best arm
may not be sufficient. Let us consider the following example.

Person B

Calories 600 400 200 ≥ 400

Protein 30 0 10 ≥ 20

Person A

Calories 600 400 200 ≥ 400

(1, 0, 0)
Simplex

(0, 1, 0)

(0, 0, 1)

(0, 1, 0)

(1, 0, 0) (1/2, 0, 1/2)

(2/3, 1/3, 0)

(1, 0, 0) (1/2, 0, 1/2)

Expected Reward 𝝁 = [3, 2, 4] Preference Direction:

𝜋∗ 𝜋∗ 𝜋∗

Person A Person B

𝑏"

𝑏#
𝑏$

Figure 6.1: A Visual Representation of Example 1.1. Left figure with the full
simplex represents the unconstrained problem. While the constraints of person A
(middle) and person B (right) modify the problem to be harder and easier than
the unconstrained one.

Example 1.1 (Optimal meal plan). Two people, A and B, are searching for a
meal plan π that maximizes taste, i.e. expected reward µJπ, while satisfying some
nutrition constraints. Without any constraints this setting reduces to BAI and can
be viewed as searching for the optimal policy over the probability simplex. However,
as illustrated in Figure 6.1, the nutrition constraints alter the set of feasible sets
and a person might have to mix between several dishes to satisfy the constraints
while maximizing the reward. In Figure 6.1, the red arrow indicates the preference
direction and the red dot corresponds to the optimal policy for each case. The dotted
arrows, bi, corresponds to the normal of that boundary, i.e. the constraint causing
the boundary, and as we will see later, in Figure 6.2, the distance between µ and bi

controls the hardness of the problem. For person A, the distance between b2 and µ
decreases compared to the unconstrained case, while it increases for person B. Thus,
the problem of finding the optimal pure exploration policy gets easier for person B
while harder for person A. This is quantified by the minimum number of samples
required to identify the optimal policies for person A, B, and the unconstrained case
(ref. Fig. 6.2).

As illustrated in Figure 6.1, a learner may need to search for a stochastic policy
that allocates positive probabilities to multiple arms and this influences how an
efficient learner should explore. Depending on the constraints, the learner’s task
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may become easier or harder, e.g. because the learner may need to explore several
arms more extensively, or the constraints may remove several near-optimal policies,
which makes the problem easier. These observations yield the following fundamental
questions:

How do a specific set of constraints impact a pure exploration problem in terms
of the minimum number samples required to identify the optimal policy?

Our Contributions. We define the problem of pure exploration in bandits with
linear constraints and derive a corresponding lower bound on the sample complexity
of any algorithm. We further derive an explicit lower bound for arms corresponding
to Gaussian distributions, which shows that the hardness depends on the projection
of µ onto boundary of a normal cone, and that the lower bound diminishes with
the increasing condition number of the constraints defining the optimal policy. Our
results show that the lower bound can be thought of as a zero-sum game where the
learner plays an exploration strategy and the adversary plays a constraint that is
not active at the optimal policy. These insights allow us to modify the standard
BAI algorithms, such as Track-and-Stop (Garivier and Kaufmann 2016) and the
game-theoretic algorithm (Degenne, Koolen, and Ménard 2019), and extend them to
the constraint setting. We prove that our proposed algorithms are optimal in the
asymptotic regime for the pure exploration problem with known linear constraints.
Finally, we empirically evaluate the algorithms, both on synthetic and realistic data.

1.1 Related work
Now, we review some works on policy learning, a classical problem in decision-
making (Bechhofer 1958), that deal with known or learned constraints on decisions
and/or constraint exploration due to safety, fairness, or other preferences.

Adapting To Known Constraints. Constraints are often used to ensure
safety in reinforcement learning, online learning and control (Moldovan and Abbeel
2012; Gillulay and Tomlin 2011; Wan et al. 2022; Vaswani et al. 2022). In the
bandit literature, some variants of the best-arm identification (BAI) problem impose
constraints on the chosen arm, or on the exploration process. Wang, Wagenmaker,
et al. (2022) and Camilleri et al. (2022) studies the setting with unknown linear
rewards under known safety constraints but only allow single coordinate actions.
Faizal and Nair (2022) consider BAI under fixed budget with known constraints on
the arms. Their setting differs from ours in that we look for a best “policy” over
arms with linear constraints rather than a single best arm.

Learning Unknown Constraints. Sui, Gotovos, et al. (2015) and Sui, Zhuang,
et al. (2018) study online optimization of an unknown function f with constraints
on f , but without formal analysis. In the bandit literature, constraints are mostly
studied in the regret-minimization setting. (Moradipari et al. 2021) and (Pacchiano
et al. 2021) consider regret minimization in linear bandits under linear constraints
from Bayesian and Frequentist perspectives, respectively. Amani et al. (2019) study
regret minimization in linear contextual bandits with unknown and unobserved linear
constraints. Wang, Bai, et al. (2021) aims to minimize the fairness regret to ensure
proportional exposure for each arm, which implies a known structure for the policies.
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Unlike these works, we focus on the pure exploration setting. Lindner et al. (2022)
considers constrained linear best-arm identification arm are vectors with known
rewards and a single unknown constraint (representing preferences) on the actions.

Pure Exploration Algorithms. Our Constrained Track-and-Stop algorithm,
(CTnS, Section 4), follows the Track-and-Stop TnS) meta-scheme proposed by Garivier
and Kaufmann (2016). In TnS, one tracks an optimal allocation with respect to a
lower bound and assumes that the current estimate is the true environment. This
approach has been applied to various bandits, e.g., linear bandits (Jedra and Proutiere
2020), spectral bandits (Kocák and Garivier 2021), heavy-tailed bandits (Agrawal,
Juneja, et al. 2020), bandits with multiple correct answers (Degenne and Koolen
2019), and latent bandits (Kinyanjui et al. 2023). The Constrained Game Explorer,
(CGE, Section 4), follows the gamification approach to pure-exploration, which treats
the lower bound as a zero-sum game between an allocation player and instance player.
This approach was first introduced by Degenne, Koolen, and Ménard (2019), and
later used for best-arm identification in linear bandits (Degenne, Ménard, et al. 2020)
and combinatorial bandits (Degenne, Ménard, et al. 2020). In particular, CGE is an
extension of the sampling rule of (Degenne, Koolen, and Ménard 2019) to the case
of known linear constraints.

Transductive Linear Bandit. Another related setup is the transductive linear
bandit (Fiez et al. 2019), where one set of arms, A, are played during exploration
while the goal is to detect the best arm in some other known set, Z. This is related to
our setting since we want to learn the best policy but only have access to arms. Hence,
our model can be viewed as a natural special case of the transductive linear bandit
where A is the standard basis and Z is the set of policies. However, the existing
literature on transductive bandits does not study the impact of linear constraints
that we explicitly study here and the resulting algorithms are different.

Bandits With Knapsacks. Our work is also related to the bandit with
knapsack (Badanidiyuru et al. 2018; Agrawal and Devanur 2016; Immorlica et al.
2022). In this model, there are upper bounds on the total amount of resources a
learner can consume while interacting with the bandit and each arm has its own
resource consumption. The goal is to minimize the cumulative regret and the learner
has to stop once the resources are depleted. This is different from our setting since
we consider the problem of finding the best policy and not regret minimization. Our
constraints are also not budget constraints but constraints in the policy space.

2 Problem formulation
We consider a multi-armed bandit problem with K arms that corresponds to reward
distributions, tPauK

a“1, with unknown means tµauK
a“1 and support R. At each time

step t, a learner chooses to play one of the arms, At P rKs, and observes an immediate
reward Rt, drawn from the reward distribution PAt . The learner has access to a
non-empty and compact set of feasible policies

F fi tπ P ∆K´1 : Bπ ď cu , (2.1)
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where ∆K´1 is the K-simplex and B P RNˆK and c P RN , are known parameters
of the linear constraints. For the ease of the presentation, we absorb the simplex
constraints in B and c. Hereafter, these variables refer to both the simplex constraints,
and the additional linear constraints of the problem. The goal of the learner is to
recommend, with probability at least 1 ´ δ, the unique optimal policy π˚

µ,F satisfying

π˚
µ,F fi arg max

πPF
µJπ. (2.2)

When it is clear from the context, we denote π˚
µ,F as π˚. We refer to such a learner

as a δ-PAC learner. As 1 ´ δ quantifies the correctness of the learner, we also want
it to be efficient, i.e. to detect the optimal policy fast. Let τδ denote the random
stopping time at which the learner stops interacting with the bandit and makes a
recommendation with confidence 1 ´ δ. We aim to design a δ-PAC learner that
minimizes the expected stopping time Erτδs, a.k.a. sample complexity, needed to find
the optimal policy.

Depending on the application, a learner can abide by the constraints of Equa-
tion (2.1) in two ways:

• Scenario 1: End-of-time constraint: The learner does not have to take
the constraints into account during exploration. Only the final recommended
policy needs to satisfy the constraints.

• Scenario 2: Anytime constraint: The exploration policy needs to satisfy
the constraints in expectation during exploration, i.e. the exploration policy
wt needs to satisfy wt P F .

For example, Scenario 1 arises while using a more sophisticated hardware to search for
an optimal policy, that should satisfy some energy-constraints, before deploying it on
a low-energy hardware. In contrast, Scenario 2 can be thought of as performing the
search directly on the low-energy hardware. Now, we explicitly state the assumptions
used in this study:

• Assumption 1: The reward of each arm i P rKs is distributed according
to a sub-Gaussian single-parameter exponential family parameterized by its
unknown mean µi.

• Assumption 2: The vector of arm means, µ, lies in a bounded domain
D “ rµmin, µmaxsK .

• Assumption 3: The optimal solution π˚
µ,F to the linear program in Equa-

tion (2.2) is unique.

Assumptions 1 and 2 are standard in the literature (Degenne and Koolen 2019;
Degenne, Ménard, et al. 2020). Assumption 3 is the analogue of assuming a unique
best arm in the BAI problem, and it ensures that the optimum of Equation (2.2) is
an extreme point. Hence, the optimal policy π˚

µ,F always corresponds to an extreme
point in the polytope F . In Appendix D, we discuss the relaxation to ϵ-good policies.
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Notations. Let Π denote the set of feasible exploration policies. Thus, for Scenario
1, Π “ ∆K´1, and Π “ F for Scenario 2. We denote the KL-divergence between two
single-parameter exponential family distributions with mean x and y as KLpx, yq.
Additionally, if the random variables are Bernoulli, we denote the KL-divergence as
klpx||yq.

3 Lower bound
Lower bounds on the sample complexity of a δ-correct algorithm, i.e. Erτδs, is
a driving force in designing good algorithms in the BAI literature (Garivier and
Kaufmann 2016; Degenne and Koolen 2019; Agrawal, Juneja, et al. 2020).

Given a problem instance µ, a learner needs to collect enough information about
the problem to be able to rule out all alternative instances, λ, for which we have
maxπPF λJπ ą λJπ˚ with confidence at least 1 ´ δ . We refer to this set of instances
as the Alt-set and denote it as

ΛFpµq fi tλ P D : max
πPF

λJπ ą λJπ˚
u. (3.1)

Garivier and Kaufmann (2016) introduced general techniques for deriving lower
bounds on the sample complexity of any δ-PAC learner, which depends on the the
distance from µ to the closest λ P ΛFpµq in an information-theoretic sense.

𝜆∗ = arg min
"∈$(&)

∑𝑤(𝑑(𝜇(, 𝜆()

𝜇 𝜆)∗ 𝜆*∗
𝜆+∗

A B𝑏!𝑏"𝑏#

Figure 6.2: Computing the λ satisfying Equation 3.4, i.e. the most confusing
instance, can be viewed as an information-theoretic projection onto the boundary
of the normal cone spanned by the active constraints at πµ. In A) we see the
different normal cones for the three different examples in Figure 6.1. In B) we
have fixed µ1 and µ3, as in Figure 6.1, and plot the lower bound, assuming Np0, 1q
noise and with δ “ 0.1, for increasing µ2 which mean that we are moving µ closer
to the boundaries in A). We observe an inverse relationship between the distance
to the boundary and the lower bound, properly characterized in Corollary 3.4.

We extend these general proof techniques and show that the expected stopping
time of any δ-PAC algorithm ϕ for BAI with linear constraints satisfies

Eµ,ϕ rτδs ě TFpµqklpδ||1 ´ δq. (3.2)
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where TFpµq is the characteristic time, defined as

T ´1
F pµq “ sup

wPΠ
inf

λPΛF pµq

K
ÿ

a“1
waKLpµa, λaq. (3.3)

The supremum in Equation (3.3) hints towards the existence of some optimal
exploration policy w, which any optimal algorithm should try to track. This is
exactly the idea behind the Track-and-Stop meta-scheme (Garivier and Kaufmann
2016) (details in Section 4). In order to design algorithms achieving the lower bound
in Equation (3.2), we need to solve the optimization problem in Equation (3.3).
This requires a more explicit characterization of ΛFpµq, continuity properties of
the function Dpw, µ, Fq fi infλPΛF pµq

řK
a“1 waKLpµa, λaq, and the set of optimal

allocations w˚pµq.
To derive an explicit expression for ΛFpµq, let M be the number of active

constraints for π˚, Bπ˚ P RMˆK be a submatrix of B consisting of all these active
constraints, and cπ˚ P RM the corresponding bounds in c. Hence, there exists at least
K linearly independent rows in Bπ˚ , i.e. a matrix B̂π˚ P RKˆK and vector ĉπ˚ P RK ,
such that π˚ “ B̂´1

π˚ ĉπ˚ . Since our objective (Equation (2.2)) is a linear program,
we can leverage the optimality condition stating that µ must be in the normal cone
of the optimal solution (Boyd and Vandenberghe 2004). Hence, we express the
Alt-set as ΛFpµq “ tλ : λ R N pπ˚qu . Here, N pπ˚q :“

␣

λ : λ “ BJ
π˚v, v P RM

ě0
(

is
the normal cone spanned by the active constraints for π˚.

Further, we say that π1 is a neighbor of π˚ if it is an extreme point in F and
shares K ´ 1 active constraints with π˚. We denote the set of all neighbors of π˚

as VFpπ˚q. Hence, we can decompose the Alt-set into a union of a finite number
of half-spaces ΛFpµq “

Ť

π1PVF pπ˚q

␣

λ : λJpπ˚ ´ π1q ă 0
(

. This formulation implies
that if π˚ is not an optimal policy for the instance λ, there must exist an direction for
the simplex algorithm to follow to increase the expected reward, i.e. Dπ1 P VFpπ˚q :
λJpπ˚ ´ π1q ă 0. This formulation of Alt-sets lead us to the observation that the
most confusing instances in the Alt-set w.r.t. µ lay on the boundary of the normal
cone.

Specifically, Lemma 3.1 shows that the function Dpw, µ, Fq is a weighted projec-
tion onto the plane λJpπ1 ´ π˚q “ 0 for some π1 P VFpπ˚q, as shown in Figure 6.2.

Lemma 3.1 (Projection Lemma). For any w P Π and µ it holds that

Dpw, µ, Fq “ min
π1PVF pπ˚q

min
λ:λJpπ˚´π1q“0

K
ÿ

a“1
waKLpµa, λaq (3.4)

To compute Dpw, µ, Fq from Equation (3.4), we need to have access to the true
instance µ, which we do not have in reality. Rather, we sequentially obtain samples
from the arms yielding an estimate µ̂t. Thus, we need Dpw, µ, Fq and w˚pµq to
satisfy continuity properties (Theorem 3.2) w.r.t µ, that ensures as the estimates µ̂t

converge to µ, Dpw, µ̂t, Fq Ñ Dpw, µ, Fq and our empirical distribution of plays
gets closer to some w P w˚pµq.
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Theorem 3.2. Following properties are true for all µ and F “ tπ P ∆K´1 : Bπ ď cu

such that the problem maxπPF µJπ has a unique solution.

• The function pw, µq ÞÑ Dpw, µ, Fq is continuous.

• The function µ ÞÑ TFpµq is continuous.

• The set-valued function µ ÞÑ w˚pµq is upper hemicontinuous (definition in
Appendix G).

• The set w˚pµq is convex.

3.1 Lower bound for Gaussian distributions
To gain further insights on how the constraints alter the lower bound in Equation (3.2),
we consider the special case where all arms are Gaussian distributions with equal
variance σ2. This leads us to a close-form of the projection in Lemma 3.1 as in
Theorem 3.3.

Theorem 3.3. If the arms follow Gaussian distributions with identical variance σ2

and wa ą 0 @a, we have that the projection minλPD:λJpπ˚´π1qď0
řK

a“1 waKLpµa, λaq

for any π1 P VFpπ˚q is satisfied by λa,π1 “ µa ´ γ pπ˚´π1qa

wa
, for γ “

µJpπ˚´π1q
ř

a
pπ˚´π1q2

wa

, and
the characteristic time is

TFpµq
´1

“ max
wPΠ

min
π1PVF pπ˚q

1
2σ2

`

µJ pπ˚ ´ π1q
˘2

ř

a
1

wa
pπ˚ ´ π1q2

a

“ max
wPΠ

min
π1PVF pπ˚q

1
2σ2

}π˚ ´ π1}2
µµJ

}π˚ ´ π1}2
Diagp1{waq

Here, Diagp1{waq is a diagonal matrix with a-th entry of the diagonal as 1{wa.

In the classical BAI setting, i.e. we only have simplex constraints, the expressions
in Theorem 3.3 reduces to the BAI results of Kaufmann, Cappé, et al. (2016), see
Appendix B for a derivation. From Theorem 3.3, we further derive a lower and an
upper bound on the characteristic time. Let us define dπ1 fi minλ:λJpπ˚´π1q“0 ||µ´λ||2
and note that this is the distance between µ and the hyperplane π˚ ´ π1 “ 0, see
Figure 6.2 for illustration.

Corollary 3.4. The characteristic time TFpµq satisfies the following bounds:

min
π1PVF pπ˚q

2σ2

d2
π1

ď TFpµq ď min
π1PVF pπ˚q

2σ2K

d2
π1

. (3.5)

Corollary 3.4 implies a lower bound of

Erτ s ě min
π1PVF pπ˚q

2σ2

d2
π1

klpδ||1 ´ δq
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Impact Of Constraints: Geometric View. We first observe that, since the
distance-to-projection dπ1 “

µJpπ˚´π1q

}π˚´π1}2
, the problem becomes easier when the direction

of the reward vector µ is aligned with the deviation in policy π˚ ´ π1. Especially, if
we only consider deterministic policies, i.e. BAI problem, dπ1 “ µ1 ´ µa “ ∆a where
µ1 is the best arm, a is the arm played by π1 and we retrieve the lower bound of
Kaufmann, Cappé, et al. (2016).

Impact Of Constraints: Constrained Optimization View. We relate the
lower bound more explicitly to the constraint matrix B by using the fact that any
neighbor π1 P VFpπ˚q can be reached from π˚ via an 1-rank update on a matrix
B̂π˚ P RKˆK consisting of K active constraints at π˚ that are linearly independent.
Thus, we only need to change one row in B̂π˚ and one element in the corresponding
ĉπ˚ to get B1 and c1 such that π1 “ B1´1c1. This results in the lower bound on the
sample complexity presented in Corollary 3.5.
Corollary 3.5. For any π1 P VFpπ˚q, let B̂π˚ P RKˆK be a set of active and linearly
independent constraints at π˚ such that the active constraints at π1 can be achieved
by a one-rank update on B̂π˚. Let r1 be the row in B̂π˚ that is changed during this
one-rank update.

Part (a): Let ∆ P RK denote the vector of the sub-optimality gaps, i.e. ∆a “

µ1 ´ µa, of each arm, then

TFpµq
´1

“ max
wPΠ

min
π1PVF pπ˚q

1
2σ2

´

∆JB̂´1
π˚ er1

¯2

}B̂´1
π˚ er1}2

Diagp1{waq

(3.6)

Part (b): Let κ2 be the condition number of a matrix B̂π˚ P RKˆK consisting of
K linearly independent active constraints at π˚, then the sample complexity of any
δ-PAC learner is lower bounded as

Erτ s “ Ω
ˆ

H

κ2 klpδ||1 ´ δq

˙

(3.7)

with H “ 2σ2
ř

a‰a˚ ∆2
a
.

Corollary 3.5 relates constraints, arm sub-optimality, and sample complexity.
Equation (3.6) links sample complexity to perturbations of the optimal policy.
Naturally, if a large perturbation of the optimal policy is only slightly sub-optimal,
the sample complexity will be large. In contrast, if a small pertubation is bound to
cause the resulting policy to be highly sub-optimal it is easier to detect the optimal
policy. Equation (3.6) also reinterprets the lower bound as a zero-sum game where
the agent plays an allocation and an adversary switches an active constraint at π˚

to a non-active one.
Equation (3.7) provides a looser bound based on a suboptimality gap based

complexity measure H, and the condition number, κ2 of the active-constraint matrix,
which measures sensitivity of the optimal policy to perturbations. A high κ2 implies
that small perturbations of the optimal policy will cause a large change of the slack
corresponding to the active constraints, making exploration easier. A low κ2 means
policy perturbations have a smaller impact on the slack making neighboring policies
less distinguishable from the optimal one.
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Algorithm 6.1 Constrained Track-and-Stop (CTnS)
Require: Confidence level δ, constraints pB, cq, exploration set Π

Play each arm once.
while cpt, δq ą DpN{t, µ̂t, Fq do Weighted projection via Lemma 3.1

Compute w˚
t P arg maxwPΠ Dpw, µ̂t, Fq Solve for optimal w w.r.t. the con-

straints
Play At P arg mina Na,t ´

řt
s“1 w˚

a,s,ϵs
and observe reward Rt

end while
Recommend π˚

µ̂t
“ arg maxπPF µ̂J

t π

4 Algorithms
In this section, we focus on extending the classical pure exploration algorithms to
the setting of pure exploration with linear constraints.

Algorithm Design. We begin by observing that any pure exploration algorithm
consists of three components: A Stopping Rule, a recommendation rule, and a
sampling strategy. The stopping rule consists of a condition deciding when to halt
sampling further. The recommendation rule decides what policy to recommend as
the optimal policy. The sampling rule decides which arm to sample next given the
history of arms sampled and intermediate policies computed.

Component 1: Chernoff’s stopping rule with constraints. As a stopping
rule, we extend the Chernoff’s stopping rule (Garivier and Kaufmann 2016). We first
introduce the confidence set Ctpδq :“

!

λ :
řK

a“1 Na,tKLpµ̂a,t, λaq ď cpt, δq

)

, where
cpt, δq is a threshold defined in Lemma 4.1.

Lemma 4.1 (Garivier and Kaufmann (2016)). For any α ą 1 there exists a constant
Cpα, Kq such that for cpt, δq “ log tαCpα,Kq

δ
we have for any t P N P pµ R Ctpδqq ď δ.

Lemma 4.1 implies that Chernoff’s stopping rule is a δ-PAC stopping rule, and
we stop when

inf
λPΛF pµ̂tq

K
ÿ

a“1
Na,tKLpµ̂a,t, λaq ą cpt, δq. (4.1)

This means that the confidence set is a subset of the normal cone spanned by the
active constraints at π˚

µ̂t
. The details of the constant in Lemma 4.1 are deferred to

Appendix C. Note that one can also derive a stopping rule via the concentration
results of Kaufmann and Koolen (2021).

Component 2: Recommendation rule. We recommend the solution of the
linear programming (Equation (2.2)) with the empirical means of the arms at the
stopping time, π˚

µ̂t
“ arg maxπPF µ̂J

t π. Since the empirical means might not always
be within the pre-specified range D, we let µ̂t denote the Euclidean projection of the
empirical means onto D.

Component 3a: CTnS.
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Algorithm 6.2 Constrained Game Explorer (CGE)
Require: Confidence level δ, constraints pB, cq, exploration set Π

while cpt, δq ą DpN{t, µ̂t, Fq do Weighted projection via Lemma 3.1
Get allocation wt from regret minimizer Running Adagrad over Π
Compute best-response λt w.r.t. wt and µ̂t Weighted projection via Lemma 3.1
Compute confidence intervals @a rαt,a, βt,as “ tξ : Na,tKLpµ̂a,t, ξq ď fptqu

@a Ua
t :“ max

!

fptq

Na,t
, maxξPtαa

t ,βa
t u KLpξ, λa,tq

)

Update AdaGrad with lpwtq “
řK

a“1 waUa,t

Play At P arg mina Na,t ´
řt

s“1 w˚
a,s,ϵs

and observe reward Rt

end while
Recommend π˚

µ̂t
“ arg maxπPF µ̂J

t π

First, we present our Constrained Track-and-Stop Algorithm (CTnS, Algo-
rithm 6.1), which is an adaptation of the Track-and-Stop (TnS) framework (Garivier
and Kaufmann 2016) to the linear constraint setting with aforementioned stopping
and recommendation rules. In Algorithm 6.1, we highlight, in red, the computations
that we modify from the original schematic to account for the linear constraints.
The algorithm starts by playing each arm once. Then, until the stopping rule in
Equation (4.1) fires, it performs C-tracking (Garivier and Kaufmann 2016). This
means that we perform a max ´ min oracle call (Line 3), and solve the problem in
Equation (3.3) w.r.t our current estimate of the means µ̂t to get an optimal allocation
w˚

t . This step leverage our novel projection result in Lemma 3.1. We track the
optimal allocation via At P arg mina Na,t ´

řt
s“1 w˚

a,s,ϵs
, where w˚

a,t,ϵt
is the projection

of w˚
t onto Π

Ş

tw : wa ą ϵt@au, and ϵt “ 1
2

?
K2`t

. Note that 1
t

řt
s“1 w˚

a,s,ϵs
P Π due

to the convexity of the set of feasible exploration policies/allocations.

Theorem 4.2 (Upper bound for CTnS). For any α ą 1 and cpt, δq be defined as in
Lemma 4.1, we have that the expected stopping time of CTnS satisfies

lim
δÑ0

Erτ s

log 1
δ

ď TFpµq, @µ P D.

The proof of Theorem 4.2 can be found in Appendix C.2 and follows the same
structure as the sample complexity proof of the original TnS in Garivier and Kaufmann
(2016). However, the optimal allocation does not necessarily have to be unique. rather,
we use the upper hemicontinuity and convexity of w˚pµq, while modifying the tracking
lemma originally used by Garivier and Kaufmann (2016) with the tracking result
of Degenne and Koolen (2019). This change allows to track a set of optimal solutions
in absence of a unique optimum.

Component 3b: CGE. Track-and-Stop algorithms, like CTnS, tend to be
computationally inefficient for larger problems since they requires a max ´ min call
at each iteration. To mitigate this, we adopt the approach of Degenne, Koolen, and
Ménard (2019), and treat the optimization problem in Equation (3.3) as a two player
zero-sum game. This results in the Constrained Game Explorer (CGE), in Algo-
rithm 6.2. Instead of solving for an optimal wt at each t, as in CTnS, we play one game
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between an allocation player, who plays w to maximize
řK

a“1 waKLpµ̂a,t, λaq, and an
instance player, who plays the confusing instance λ to minimize

řK
a“1 waKLpµ̂a,t, λaq.

We deploy an instance of AdaGrad (Duchi et al. 2011) as the allocation player
is taken to be, which enjoys sub-linear regret over any bounded domain when
losses are convex, and the instance player is taken to be a best-response w.r.t.
the allocation wt. The best-response is computed via Lemma 3.1. The loss pro-
vided to AdaGrad at each time step is

řK
a“1 wa,tUa,t, where Ua,t induces optimism

as Ua,t fi maxξPtαa,t,βa,tu Na,tKLpξ, λa,tq. Here, pαa,t, βa,tq are the endpoints of the
confidence interval around µ̂a,t, i.e. rαt,a, βt,as “ tξ : Na,tKLpµa,t, ξq ă fptqu, and
fptq “ 3 log t ` log log t. We apply the same tracking as in CTnS.

Theorem 4.3 (Upper bound for CGE). The expected sample complexity of CGE
satisfies

Erτ s ď T0pδq ` CK,

where

T0pδq :“ max
!

t P N : t ď TFpµqcpt, δq ` Op
a

tQq ` Op
a

t log tq
)

.

Cµ is problem-dependent constant, C is a universal constant and Q is an upper
bound on the losses provided to Adagrad.

The full proof of Theorem 4.3 can be found in Appendix C.3. We simply follow
the steps of the proof of Theorem 2 in Degenne, Koolen, and Ménard (2019) and
apply specifics of our setting when applicable.

Theorem 4.2 and 4.3 show that CTnS and CGE are asymptotically optimally, i.e.
upper bound on their sample complexities match the lower bound of constrained
pure exploration for small enough δ.

5 Experimental analysis
We evaluate our algorithms using the threshold cpt, δq “ log 1`log log t

δ
, which is

commonly done in the literature (Garivier and Kaufmann 2016), and we set fptq “

log t in CGE. As benchmarks we will use the lower bound, Equation 3.2, as well
as a learner that samples from the optimal allocation, given by the lower bound,
at all time steps. We also consider a learner that draws arms from the uniform
distribution and in scenarios where the uniform distribution is not in the set of
feasible exploration policies we project it onto the set and sample from the resulting
distribution.

In addition, we consider a naïve adaptation of Track-and-Stop (Kaufmann, Cappé,
et al. 2016), which we call the Projected-Track-and-Stop (PTnS). The PTnS algorithm
computes the allocation as if it was solving the classical BAI problem and projects
the allocation back to the feasible set when necessary. Comparing CGE and CTnS
with PTnS demonstrates (a) the importance of tracking the constrained lower bound
to design an efficient algorithm, and, (b) the desired efficiency cannot be achieved
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(a) Characteristic time of the BAI problem
as we vary µ4 and µ5.
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(b) Characteristic time of the constraint pure-
exploration problem as we vary µ4 and µ5
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(c) Results (for 1000 random seeds) on the in-
stance highlighted as a triangle in Figure 6.3a
and Figure 6.3b, µ “ p1, 0.5, 0.4, 0.4, 0.5q,
with constraints and δ “ 0.1.
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(d) Results (for 1000 random seeds) on the
instance highlighted as a star in Figure 6.3a
and Figure 6.3b, µ “ p1, 0.5, 0.4, 0.95, 0.8q,
with constraints and δ “ 0.1.

Figure 6.3: Figure 6.3a and 6.3b illustrate the hardness of the problem, i.e.
the Characteristic time, changes in the 5 arm instance µ “ p1.0, 0.5, 0.4, µ4, µ5q
as we vary µ4 and µ5. Figure 6.3a corresponds to the hardness in the BAI
while Figure 6.3b is the constraint setting with constraints π1 ` π2 ď 0.5 and
π3 ` π4 ď 0.5. We clip the characteristic time at 106 for visual purposes.

just by tracking the unconstrained lower bound and projecting the corresponding
allocation policy to the constrained set. Appendix E contains additional experiments.

Observation 1: Constraints alter the hardness ff the problem. In Figures
6.3a and 6.3b we illustrate how the hardness of a bandit instance µ may differ once
we introduce constraints, assuming anytime constraints. We consider the instance
µ “ p1.0, 0.5, 0.4, µ4, µ5q and plot how the characteristic time TFpµq changes as we
vary µ4 and µ5, Figure 6.3a corresponds to the classical BAI, i.e. no constraints,
and in Figure 6.3b we have introduced the two constraints π1 ` π2 ď 0.5 and
π3 ` π4 ď 0.5. We have highlighted two instances, one where the BAI problem is
easy but the constraint problem is hard (black triangle) and one where the reverse
is true (black star). We run the algorithms on these two instances in Figure 6.3c
and 6.3d, assuming anytime constraints, and observe that both algorithms operate
close to the lower bound and outperforms the uniform allocation strategy. We also
observe that the algorithms perform equally or better than the optimal learner, this
is an interesting phenomena and have been observed earlier in other pure exploration
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Figure 6.4: Problem instance with 8 Gaussian arms with σ “ 1. The arm
means are µ “ r1.0, 0.7, 0.3, 0.0, ´0.5, ´1.0, ´2.0, ´3.0s and we have one constraint
7π1 ` 7π2 ` π3 ď 0.5. The optimal policy is π3 “ π4 “ 0.5. Results for δ “ 0.1
and 1000 random seeds.
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(b) End-of-Time Constraints

Figure 6.5: Experiments on IMDB dataset with 12 movies and δ “ 0.1. Each
experiment was performed over 500 random seeds.

scenarios (Degenne, Koolen, and Ménard 2019). The PTnS does not account for the
constraints, as well as CTnS and CGE, and has a sample complexity on par with
uniform sampling.

Observation 2: Naïve projection cause high sample complexity. In
Figure 6.4, we consider an eight-armed bandit with Gaussian reward distributions.
We observe that PTnS performs the worst on this instance, specially in the end-of-
time setting where it is outperformed by uniform sampling. This because in a BAI
problem with the same µ the hardness of the problem lies separating arm 1 and 2
but this doesn’t have to be the case in the constraint bandit. The sub-optimality of
PTnS in Figure 6.4a, the anytime scenario, illustrates that naïvely projecting the
allocation onto the feasible set won’t account for the constraints in a meaningful
way. In Appendix F we further discuss these examples and compute the optimal
allocations and the allocations PTnS converge to for each scenario.

IMDB movie recommendation environment. We construct a semi-synthetic
task based on the widely used IMDB 50K Movie Dataset (Maas et al. 2011) which
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contains metadata on k0 “ 50000 movies including association with one or more
of d “ 23 genres, as indicated by a binary matrix X P t0, 1umˆd. In our setting,
actions correspond to recommending one out of a subset of k ď k0 movies. To
create reward distributions for each movie, we simulate a population of nu “ 600
users, each assigned nf “ 5 favorite genres fi with weights wifi

“ r20, 10, 5, 2, 2s

and let wia “ 0 for a R fi. A score sia for user i and movie a is created as follows,
sij “ clippts̃ia{

ř

aPfi
wia ¨ σ0 ` σ1ϵias ; 1, 5q where s̃i¨ “ wiX

J ` w0, ϵia „ Up0, 1q,
σ0 “ 5, σ1 “ 3, and txs indicates rounding of x to the nearest integer. We construct
the bandit environment by letting each movie a be represented by an arm with
reward Ra „ N pµ̂s¨a , σ̂2

s¨a
q determined by the mean and standard deviation of user

reviews for the movie. We sample a subset of movies and search for the optimal
policy that allocates at most 0.3 to action movies, at least 0.3 to drama movies
and at least 0.3 on family movies. Note that one movie might belong to more than
one category. We present the result in Figure 6.5 for both the anytime scenario
and the end of time scenario. We observe that CTnS and CGE outperform the
uniform allocation strategy, which has a very high variance. We also observe a bigger
difference between the algorithms under end of time constraints, this is reasonable
since the set of plausible exploration policies is larger for that scenario. If the set of
exploration policies is limited, there is little room for an algorithm to be adaptive.
This is also captured in the fact that the lower bound for anytime constraints is
always higher or equal to the bound for end-of-time constraints.

6 Conclusions and future directions
In this paper, we study the problem of pure exploration in bandits with linear
constraints. We provide a generic lower bound for this setting that depends on an
information-theoretic projection onto the boundary of the normal cone spanned by
the active constraints at the optimal policy. We derive a closed-form lower bound for
the case of Gaussian distributions and provide geometric insights into how constraints
can make a problem easier or harder. Furthermore, we leverage the projection-based
computation of the confusing instances to modify TnS (Garivier and Kaufmann
2016) and GE (Degenne, Koolen, and Ménard 2019) to corresponding CTnS and
CGE versions for pure exploration in constraint bandits. We empirically evaluate
the algorithms on synthetic and real data to assess the impact of constraints on the
hardness of the problem.

One interesting future direction is learning when reward and constraints are
unknown or partially unknown. Another future direction we deem very interesting is
bandit with non-linear constraints as this would change this structure of the normal
cone and the resulting projection.
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A Notations

Table 6.1: Notations

K : Number of arms.

δ : Confidence parameter.

KLpx, yq : KL-divergence between two random variables with
means x and y.

klpx||yq : KL-divergence between two Bernoulli random vari-
ables with means x and y.

D fi rµmin, µmaxsK , i.e. the range of expected rewards

µ : True reward vector, µ P D.

µ̂t : Empirical means at time t projected onto D.

B : Matrix defining the linear constraints, i.e. Bπ ď c.

c : Vector defining the upper bound in the linear con-
straints, Bπ ď c.

∆K´1 : Simplex in K dimensions.

F fi tπ P ∆K´1 : Bπ ď cu, i.e. the constrained policy
space.

π : A feasible policy over K arms, i.e. π P F .

π˚ or π˚
µ : Unique optimal policy for bandit instance µ, defined

as π˚
µ fi π˚ fi arg maxπPF µJπ.

VFpπ˚q : Set of extreme points for π1, which share K´1 linearly
independent constraints with π˚.

N pπ˚q : Normal cone spanned by the active constraints at π˚.

ΛFpµq fi tλ P D : maxπPF λJπ ą λJπ˚
µu, i.e. the set of alter-

native bandit instances.

τ : Random stopping time of a pure exploration algo-
rithm.

Π : Set of possible exploration policies/allocations.

TFpµq´1 fi supwPΠ infλPΛF pµq

řK
a“1 waKLpµa, λaq, the characteris-

tic time for the constrained policy space

Dpw, µ, Fq : Shorthand for infλPΛF pµq

řK
a“1 waKLpµa, λaq.

Dpw, µ, λq : Shorthand for
řK

a“1 waKLpµa, λaq.
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w˚pµq : Set of optimal allocations for bandit instance µ.

H fi 2σ2

}∆}2
2

quantifies complexity of bandit instance µ
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B Lower bound on sample complexity
The following lemma by Kaufmann, Cappé, et al. (2016) provides a general information-
theoretic inequality that applies to any bandit model.

Lemma B.1 (Kaufmann, Cappé, et al. (2016)). Let µ and λ be two bandit models
with K arms such that µa and λa are mutually continuous. For any almost surely
finite stopping time τ we have

K
ÿ

a“1
EµrNa,τ sKLpµa, λaq ě klpPµpEq||PλpEqq (B.1)

where E is any measurable event with respect to the filtration generated by the observed
history.

From Lemma B.1 we can directly derive a lower bound on the expected stopping
time of any δ-PAC algorithm in the constraint multi-armed bandit setting. We
present this lower bound in Theorem B.2 and the proof is virtually the same as the
proof for the lower bound in Garivier and Kaufmann (2016). We present it here for
completeness.

Theorem B.2 (Lower bound on sample complexity under constraints). The stopping
time τ of any δ-PAC learner satisfy

Eµrτ s ě TFpµqklpδ||1 ´ δq. (B.2)

Proof. Let µ and λ P ΛFpµq be two bandit models with K arms such that they do
not share optimal policy, i.e. π˚

µ ‰ π˚
λ.

Let E denote the event of recommending π˚
µ for any bandit instance at stopping

using some δ-PAC algorithm. Then using Lemma B.1, and δ-correctness of π˚
µ for µ,

we have
K
ÿ

a“1
EµrNa,τ sKLpµa, λaq ě klp1 ´ δ||δq “ klpδ||1 ´ δq.

Further, we multiple and divide by Eµrτ s which yields

K
ÿ

a“1
EµrNa,τ sKLpµa, λaq “ Eµrτ s

K
ÿ

a“1

EµrNa,τ s

Eµrτ s
KLpµa, λaq

“ Eµrτ s

K
ÿ

a“1
waKLpµa, λaq ě klpδ||1 ´ δq ,

where wa fi
EµrNa,τ s

Eµrτ s
, and

řK
a“1 wa “ 1.

Since the above inequality is true for any λ P ΛFpµq, we have

inf
λPΛF pµq

Eµrτ s

K
ÿ

a“1
waKLpµa, λaq “ Eµrτ s inf

λPΛF pµq

K
ÿ

a“1
waKLpµa, λaq ě klpδ||1 ´ δq .
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The equality is due to the fact that Eµrτ s is independent of λ.
Now, we further maximise over wa to get

Eµrτ s sup
wPΠ

inf
λPΛF pµq

K
ÿ

a“1
waKLpµa, λaq ě klpδ||1 ´ δq.

Finally, using the definition of the characteristic time TFpµq yields

Eµrτ s ě TFpµqklpδ||1 ´ δq.

B.1 Proof of Lemma 3.1
To derive the key properties of the optimal solution and the set of optimal allocations,
as presented in Lemma 3.2, we first explicate the set of optimal solutions, and then,
use Berge’s theorem (Theorem G.1).

Step 1: Recall that

ΛFpµq “ tλ P D : λ R N pπ˚
qu ,

where the normal cone is expressed as

N pπ˚
q “

č

π1PVF pπ˚q

␣

λ P D : λJ
pπ˚

´ π1
q ě 0

(

.

This is due to the fact that if π˚ is not the optimal policy under the environment λ,
there exists an improving direction in the simplex algorithm, i.e. a neighbor π1, such
that λJpπ˚ ´ π1q ă 0.

Now, since the set of alternative hypotheses is the compliment of the normal
cone, we write

ΛFpµq “
ď

π1PVF pπ˚q

␣

λ : λJ
pπ˚

´ π1
q ă 0

(

. (B.3)

Applying Equation (B.3) in Dpw, µ, Fq leads to,

Dpw, µ, Fq “ inf
λPΛF pµq

K
ÿ

a“1
waKLpµa, λaq “ min

π1PVF pπ˚q
inf

λ:λJpπ1´π˚qă0

K
ÿ

a“1
waKLpµa, λaq .

Step 2: What remains to be shown is that the inf is attained by some λ on
λJpπ1 ´ π˚q “ 0.

For some π1 P VFpπ˚q take an arbitrary λ1 P
␣

λ : λJpπ1 ´ π˚q ă 0
(

. There
exists an λ2 P

␣

λ P D : λJpπ˚ ´ π1q “ 0
(

such that |µa ´ λ1
a| ě |µa ´ λ2

a| @a due to
the convexity of D. The mapping y Ñ KLpx, yq is an increasing function on the
domain y ą x and a decreasing function on y ă x which implies that

K
ÿ

a“1
waKLpµa, λ1

aq ě

K
ÿ

a“1
waKLpµa, λ2

aq. (B.4)
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There exists a sequence tλtu
8
t“1 Ă

␣

λ : λJpπ˚ ´ π1q ă 0
(

such that λ0 “ λ1 and
limtÑ8 λt “ λ2. Hence, we can for any λ1 get arbitrary close to some λ2 such that
Equation (B.4) holds.

Due to continuity of KLpx, .q, the inf is attained by some
λ2 P

␣

λ P D : λJpπ˚ ´ π1q “ 0
(

. Hence, we conclude the proof.

B.2 Proof of Theorem 3.2
Property (a-b). We first note that the function Dpw, µ, λq fi

řK
a“1 waKLpµa, λaq is

continuous in all elements. Take any pw, µq such that the optimal policy in F is
unique. Let pwt, µtqtě1 be a sequence in Π ˆ D such that

pwt, µtq
tÑ8
ÝÝÝÑ pw, µq.

Further, for any ϵ ą 0 there exists a t1 ě 1 such that ||pw, µq ´ pwt, µtq||2 ă ϵ and
ΛFpµq “ ΛFpµtq @t ě t1. By continuity of Dpw, µ, λq we have that for any ϵ1 ą 0
there exists exists an t2 ě 1 such that for t ě t2, we have

|Dpwt, µt, λq ´ Dpw, µ, λq| ď ϵ1, @λ P RK .

Thus, by taking t ě t1, t2 leads to

|Dpw, µ, Fq ´ Dpwt, µt, Fq| “

ˇ

ˇ

ˇ

ˇ

inf
λPΛF pµq

Dpw, µ, λq ´ inf
λPΛF pµtq

Dpwt, µt, λq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

inf
λPΛF pµq

pDpw, µ, λq ´ Dpwt, µt, λqq

ˇ

ˇ

ˇ

ˇ

ď ϵ1 ,

which establishes the continuity properties.
Property (c). The upper hemicontinuity of w˚pµq and continuity of Dpµ, Fq

follows from Berge’s maximum theorem, see Theorem G.1, by letting fpx, θq “

Dpw, µ, Fq and Cpθq “ Π. As a consequence of Berge’s theorem (Theorem G.1), we
substitute the supw with maxw.

Property (d). The convexity of the set w˚pµq follows from the fact that it is the set
of optimal solutions to maxwPΠ Dpw, µ, Fq and Dpw, µ, Fq is concave (Specifically,
it is linear in w).

B.3 Proof of Theorem 3.3
For two bandit instances µ and λ consisting of Gaussian distributions with same
variance σ2, we have

Dpw, µ, Fq “ min
λ:λJpπ˚´π1q“0

K
ÿ

a“1
wa

1
2σ2 pµa ´ λaq

2 .
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Now, by introducing the Lagrange multiplier γ, we obtain

Lpγ, λq fi
1

2σ2

K
ÿ

a“1
wapµa ´ λaq

2
´ γλJ

pπ˚
´ π1

q. (B.5)

For brevity, we denote v fi pπ˚ ´ π1q.
Computing the gradient ∇λLpγ, λq and equating it to 0 yields

λa “ µa `
γσ2

wa

va.

Substituting λa in Equation (B.5) yields

Lpγq “ min
λ

Lpγ, λq “
σ2γ2

2

K
ÿ

a“1

v2
a

wa

´ γµJv ´

K
ÿ

a“1

γ2σ2

wa

v2
a

“ ´
σ2γ2

2

K
ÿ

a“1

v2
a

wa

´ γµJv . (B.6)

Maximizing over γ yields

γ “
´µJv

σ2
ř

a
v2

a

wa

,

and putting it back in Equation (B.6) gives the final expression of λa

λa “ µa ´
va

wa

˜

µJv
ř

a
v2

a

wa

¸

. (B.7)
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B.4 Proof of Corollary 3.4
Lower bound on the characteristic time: To lower bound TFpµq, we need to
upper bound the RHS in Equation (3.3), i.e. TFpµq´1 “ supw minλ

ř

a waKLpµa, λaq.
Step 1: We first observe that

sup
w

min
λ

ÿ

a

waKLpµa, λaq “ max
w

min
λ

ÿ

a

waKLpµa, λaq,

due to Berge’s theorem. Further, the max-min inequality gives

max
w

min
λ

ÿ

a

waKLpµa, λaq ď min
λ

max
w

ÿ

a

waKLpµa, λaq.

Step 2: We proceed to upper bound maxw

ř

a waKLpµa, λaq for each neighbor
π1 P VFpπ˚q independently.

For a fixed π1 P VFpπ˚q, Theorem 3.3 tells us that

min
λ:λJpπ˚´π1q“0

K
ÿ

a“1
waKLpµa, λaq “

γ2

2σ2

K
ÿ

a“1

pπ˚ ´ π1q2
a

wa

“

˜

µJ pπ˚ ´ π1q
ř

a
pπ˚´π1q2

wa

¸2
1

2σ2

K
ÿ

a“1

pπ˚ ´ π1q2
a

wa

“
1

2σ2

`

µJ pπ˚ ´ π1q
˘2

řK
a“1

pπ˚´π1q2
a

wa

.

Step 3: We further minimize the expression pπ˚´π1q2
a

wa
under the constraint

ř

a wa “ 1.
Using Langrange multiplier technique, we get

wa “
|pπ˚ ´ π1q|a

řK
a“1 |pπ˚ ´ π1q|a

which yields that pπ˚´π1q2
a

wa
ě }π˚ ´ π1}2

1. Hence,

1
2σ2

`

µJ pπ˚ ´ π1q
˘2

řK
a“1

pπ˚´π1q2
a

wa

ď
1

2σ2

`

µJ pπ˚ ´ π1q
˘2

}π˚ ´ π1}2
1

ď
1

2σ2

`

µJ pπ˚ ´ π1q
˘2

}π˚ ´ π1}2
2

.

Here, the last part is exactly , 1
2d2

π1 , i.e. the squared distance between µ and the
hyperplane π˚ ´ π “ 0.

Thus, we conclude the lower bound.
Upper bound on the characteristic time: To obtain the upper bound, we

aim to lower bound the inverse TFpµq´1 “ supw minλ

ř

a waKLpµa, λaq.
We let wa “ 1

K
, @a, and observe that

max
w

min
λ

ÿ

a

waKLpµa, λaq ě min
λ

1
K

ÿ

a

KLpµa, λaq.
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For some π1 P Vpπ˚q and using Theorem 3.3 with wa “ 1
K

, @a, we get

1
K

ÿ

a

KLpµa, λaq “
1

2σ2K

`

µJ pπ˚ ´ π1q
˘2

}π˚ ´ π1}2
2

“ d2
π1

1
2σ2K

This concludes the upper bound on the characteristic time.

B.5 Proof of Corollary 3.5
Step 1: Neighboring policies and rank-1 update. let B̂ P RKˆK be a set of
linearly independent constraints at π˚ and ĉ be the corresponding values in c such
that π˚ “ B̂´1ĉ. For any π1 P VFpπ˚q we let B1´1 and c1 be the constraints such
that π1 “ B1´1c1.

Specifically, B1 and c1 can be retrieved from the following rank-1 updates

B1
“ B̂ ` erpb1

r ´ b̂rq
J ,

c1
“ pc ` pc1

r ´ crqer ,

where b̂r a column vector corresponding to the constraint on the r-th row of B̂ that
we swap with b1

r in order to get B1 and er a column vector with all elements equal to
0 except the r-th element which is equal to 0. Similarly, pc1

r ´ crq ‰ 0 is the change
that we perform on the r-th element in ĉ to get c1.

Step 2: From perturbation in constraints to perturbations in policies.
Now, we observe that

B1π1
´ B̂π˚

“ pc1
r ´ crqer .

Since B̂ is invertible, further rearrangement yields

π1
´ π˚

“ B̂´1
´

pc1
r ´ crqer ` erpb̂r ´ b1

rq
Jπ1

¯

“ B̂´1
´

pc1
r ´ crqer ` erb̂

J
r π1

´ erb
1J
r π1

¯

“ B̂´1
´

pc1
r ´ crqer ` erb̂

J
r π1

´ c1
rer

¯

“ B̂´1
´

pb̂J
r π1

´ crqer

¯

The last part is the slack of π1 at the r-th constraint in B̂, hereby referred to as ξ.
We bound the norm of B̂´1er as follows

σminpB̂´1
q “ inf

v:}v}2“1
}B̂´1v}2 ď }B̂´1er}2 ď sup

v:}v}2“1
}B̂´1v}2 “ σmaxpB̂´1

q

where σminpB̂´1q and σmaxpB̂´1q denote the smallest and largest singular value of
B̂´1. From the properties of the inverse, we get

1
σmaxpB̂q

ď }B̂´1er}2 ď
1

σminpB̂q

.
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Thus, we obtain a lower and upper bound on the perturbation in policies

|ξ|

σmaxpB̂q

ď }π1
´ π˚

}2 ď
|ξ|

σminpB̂q

. (B.8)

Now, using this new representation of change in policy in terms of the slacks in
the constraints, we derive our two results.

Step 3 for Part (a): A perspective of the zero-sum game. To get the
expression in Equation (3.6) we simply take the expression for π˚ ´ π1, developed
in the previous step, and plug into the expression of the characteristic time in
Theorem 3.3. Hence,

1
2σ2

}π˚ ´ π1}2
µµJ

}π˚ ´ π1}2
Diagp1{waq

“
1

2σ2

}B̂´1
´

pb̂J
r π1 ´ crqer

¯

}2
µµJ

}B̂´1
´

pb̂J
r π1 ´ crqer

¯

}2
Diagp1{waq

“
1

2σ2

}B̂´1 pξerq }2
µµJ

}B̂´1 pξerq }2
Diagp1{waq

“
1

2σ2

}B̂´1 perq }2
µµJ

}B̂´1 perq }2
Diagp1{waq

“
1

2σ2
p∆JB̂´1 perqq2

}B̂´1 perq }2
Diagp1{waq

.

This gives the following expression for the characteristic time

TFpµq
´1

“ max
wPΠ

min
π1PVF pπ˚q

1
2σ2

´

∆JB̂´1
π˚ er1

¯2

}B̂´1
π˚ er1}2

Diagp1{waq

.

This formulation of the inverse characteristic time allows us to perceive it as a
zero-sum max ´ min game, where the max-player chooses an exploration allocation
and the min-player swaps one of the active constraints, at the optimal policy, with
one inactive constraint.

Step 3 for Part (b): Bounds on characteristic time from perturbation
in policies. From Corollary 3.4 we have

1
2σ2

`

µJ pπ˚ ´ π1q
˘2

}π˚ ´ π1}2
2

“
1

2σ2

`

µJ pπ˚ ´ π1q ´ µ˚1J pπ˚ ´ π1q
˘2

}π˚ ´ π1}2
2

“
1

2σ2
pµ ´ µ˚1q

J
pπ˚ ´ π1q

2

}π˚ ´ π1}2
2

“
1

2σ2

´

∆JB̂´1er

¯2

}B̂´1er}2
2

ď
}∆}2

2
2σ2

σ2
maxpB̂q

σ2
minpB̂q

.
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Step 4 for Part (b): Concluding with complexity of bandit instance
and constraints. By referring to κpB̂q fi

σmaxpB̂q

σminpB̂q
as the condition number of B̂,

and H fi 2σ2

}∆}2
2

as the quantifier complexity of bandit instance µ, we get

TFpµq
´1

ď min
π1PVF pπ˚q

κ2pB̂q

H
.

Hence, for any µ, we have that TFpµq ě H
κ2 , where κ2 is the minimum condition

number of any sub-matrix B̂ P RKˆK of B consisting of K linearly independent
active constraints at π˚. This leads to a lower bound

Erτ s ě Ω
ˆ

H

κ2 klpδ||1 ´ δq

˙

.

B.6 Theorem 3.3 reduces to the standard BAI bounds with
simplex constraints

Recall the theorem statement: If the arms follow Gaussian distributions with identical
variance σ2 and wa ą 0 @a,
we have that the projection minλPD:λJpπ˚´π1qď0

řK
a“1 waKLpµa, λaq for any π1 P

VFpπ˚q is satisfied by

λa,π1 “ µa ´ γ
pπ˚ ´ π1qa

wa

, (B.9)

for γ “
µJpπ˚´π1q
ř

a
pπ˚´π1q2

wa

, and the characteristic time is

TFpµq
´1

“ max
wPΠ

min
π1PVF pπ˚q

1
2σ2

`

µJ pπ˚ ´ π1q
˘2

ř

a
1

wa
pπ˚ ´ π1q2

a

“ max
wPΠ

min
π1PVF pπ˚q

1
2σ2

}π˚ ´ π1}2
µµJ

}π˚ ´ π1}2
Diagp1{waq

Here, Diagp1{waq is a diagonal matrix with a-th entry of the diagonal as 1{wa.
In the case of simplex constraints all extreme points corresponds to deterministic

policies and we let πa corresponds to the policy that only plays arm a and let
π˚ “ π1. For some πa we have, due to Equation (B.9),

λa1,πa “ µa1 , @a1
‰ 1, a

we further have γ “ ∆a
1

w1
` 1

wa

and

λ1,πa “ µ1 ´
µ1 ´ µa
1

w1
` 1

wa

1
w1

“ µ1 ´ wa
µ1 ´ µa

w1 ` wa

“
1

w1 ` wa

pw1µ1 ` waµaq

λa,πa “ µa `
µ1 ´ µa
1

w1
` 1

wa

1
wa

“ µa ` w1
µ1 ´ µa

w1 ` wa

“
1

w1 ` wa

pw1µ1 ` waµaq .
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Hence, λ1,πa “ λa,πa and these are exactly the confusing instance one gets, for each
arm a, in the BAI setting (Kaufmann, Cappé, et al. 2016). Plugging back into the
expression for the characteristic time yields

TFpµq
´1

“ max
w

min
a

w1wa

w1 ` wa

∆2
a.
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C Upper bounds on sample complexity

C.1 Stopping criterion
Lemma C.1 (Magureanu et al. (2014)). @γ ą K ` 1 and t P N it holds

P

˜

K
ÿ

a“1
Na,tKLpµ̂a, µaq ě γ

¸

ď e´γ

ˆ

rγ log tsγ

K

˙K

eK`1

The correctness of our stopping rule in Equation (4.1) follows easily from
Lemma C.1. Let πτ be our recommendation at stopping

P pπτ ‰ π˚
q ď P

˜

Dt P N :
K
ÿ

a“1
Na,tKLpµ̂a,t, µaq ě cpt, δq

¸

ď

8
ÿ

t“1
e´cpt,δq

ˆ

rcpt, δq log tscpt, δq

K

˙K

eK`1.

We plug in cpt, δq “ log tαC
δ

and choose C such that

8
ÿ

t“1

ˆ

rcpt, δq log tscpt, δq

K

˙K

eK`1
ď C

which yields

P pπτ ‰ π˚
q ď δ.
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C.2 Upper bound for CTnS
Proof of Theorem 4.2.
Step 1: Defining Good Event. Let T P N. For ϵ ą 0 and hpT q “

?
T , let ET be

the event

ET fi

T
č

t“hpT q

t}µ̂t ´ µ}8 ď ξpϵqu ,

where ξpϵq ă maxπ1PVF pπ˚q
1

4
?

K
µJ pπ˚ ´ π1q is such that

}µ1
´ µ}8 ď ξpϵq ùñ sup

w1Pw˚pµ1q

sup
wPw˚pµq

}w1
´ w} ď ϵ

This ξpϵq exists due to the upper hemicontinuity of w˚pµq, Theorem 3.2.
Step 2: Concentrating to Good Event. We will make use of the following

Lemma from Garivier and Kaufmann (2016) which bounds the probability of the
compliment Ec

T .

Lemma C.2 (Concentration around means (Garivier and Kaufmann 2016)). There
exist two constants B, C such that

P pEc
T q ď BT exp

´

´CT
1
8

¯

This Lemma is due to the fact that C-tracking ensure that each arm has been
played at least

?
t times at each time t, see next Lemma.

Lemma C.3 (Garivier and Kaufmann (2016)). For all t ě 1 and @a, C-Tracking
ensures Na,t ě

?
t ` K2 ´ K and

max
a

ˇ

ˇ

ˇ

ˇ

ˇ

Na,t ´

t
ÿ

s“1
wa,s

ˇ

ˇ

ˇ

ˇ

ˇ

ď Kp1 `
?

tq (C.1)

We now leverage to following tracking Lemma of Degenne and Koolen (2019)
which holds whenever we are tracking a set of optimal weights.

Lemma C.4 (Concentration in allocations (Degenne and Koolen 2019)). Under ET ,
there exists a Tϵ such that for T where hpT q ě Tϵ C-tracking will satisfy

inf
wPw˚pµq

}
Nt

t
´ w}8 ď 3ϵ, @t ě 4K2

ϵ2 ` 3hpT q

ϵ

This shows that C-tracking is eventually going to produce an empirical distribution
of plays that is close to an optimal allocation and the empirical distribution will
converge to a point in w˚pµq as t Ñ 8. We need Lemma C.4 instead of the original
tracking result in Garivier and Kaufmann (2016) since the optimal allocation does
not need to be unique. However, we know from Theorem 3.2 that the set of optimal
allocations w˚pµq is convex and we can thus apply Lemma C.4.
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There exists a Tϵ such that under ET and t ě maxpTϵ, hpT qq we have

|pµ ´ µ̂tq
Jπ˚

| ď
?

Kξ ă
1
4 max

π1PVF pπ˚q
µJ

pπ˚
´ π1

q

which implies that π˚ “ arg maxπPF µ̂J
t π. This ensures that we will be computing

the stopping criterion w.r.t. to the correct Alt-set ΛFpµq.
Step 3: Complexity given the Good Event. Assume T ě Tϵ and let

Cϵ,Fpµq fi inf
µ1:}µ1´µ}8ďξpϵq

w1:}w1´w}8ď3ϵ,@wPw˚pµq

Dpw1, µ1, Fq.

This Cϵ,Fpµq gives the worst-case characteristic time we might compute in the
algorithm due to the fact that our estimates are not exact.

Assuming ET , Lemma C.4 gives for t ě Tϵ

DpNt, µ̂t, Fq ě tCϵ,Fpµq.

Step 4: Bounding the Stopping Time for Good and Bad Events. Let τδ

be the stopping time, then

minpτδ, T q ď
?

T `

T
ÿ

t“Tϵ

Iτδąt

and plugging in our stopping rule, i.e. DpNt, µ̂t, Fq ą cpt, δq yields

Tϵ `

T
ÿ

t“Tϵ

IpDpNt, µ̂t, Fq ď cpt, δqq ď
?

T `

T
ÿ

t“Tϵ

IptCϵ,Fpµq ď cpT, δqq

ď
?

T `
cpT, δq

Cϵ,Fpµq
.

We define Tδ :“ inf
!

T P N :
?

T `
cpT,δq

Cϵ,F pµq
ď T

)

. Hence,

Erτδs ď Tϵ ` Tδ `

8
ÿ

T “1
BT exp

´

´CT
1
8

¯

ď Tϵ ` Tδ ` T 1

where
ř8

t“1 BT exp
´

´Ct
1
8

¯

ď T 1 ă 8. We bound Tδ in the same way as Garivier
and Kaufmann (2016). Let Cpηq “ inftT : T ´

?
T ě T 1

1`η
u for some η ą 0. Then

Tδ ď Cpηq ` inf
"

T P N : T
Cϵ,Fpµq

1 ` η
ě cpT, δq

*

.

Step 5: Obtaining the Asymptotic Bound. Dividing Equation C.2 with
log 1

δ
and taking the limit yields

lim
δÑ0

inf Erτδs

log 1
δ

ď
αp1 ` ηq

Cϵ,Fpµq
.

Cϵ,Fpµq is continuous due to Theorem 3.2 and taking the limits η, ϵ Ñ 0 yields

lim
δÑ0

inf Erτδs

log 1
δ

ď αTFpµq, @α ą 1.
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C.3 Upper bound for CGE
The proof follows the same structure as the proof of Theorem 2 in Degenne, Koolen,
and Ménard (2019) and we use the same concentration analysis. The main difference
is that we have to adjust the definition of approximate optimistic saddle point
algorithm.

Proof of Theorem 4.3.
Step 1: Defining Good Event. We start by defining the good event

ET fi t@t ď T @a, Na,tKLpµ̂a,t, µtq ď fptqu

where fptq “ 3 log t ` log log t.
Step 2: Concentration of Good Event.
We can bound

ř8

t“1 P pEc
T q using Lemma C.1. Hence, for any t P N and arm a

P pNa,tKLpµ̂a,t, µtq ě fptqq ď e´fptq
p1 ` fptq log tqfptq

“
e2

t3 log t
pfptq ` fptq2 log tq.

Summing yields

K
ÿ

a“1

8
ÿ

t“1
P pEc

T q ď K ` K
8
ÿ

t“2

e2

t3 log t

`

fptq ` fptq2 log t
˘

ď KC ă 8. (C.2)

Here a constant C “ 21 is sufficient.
Step 3: Starting from the Stopping Criterion The main idea of the proof

is to work with the stopping criterion

cpt, δq ě inf
λPΛF pµ̂tq

K
ÿ

a“1
Na,tKLpµ̂a,t, λaq

and show that if we have the event ET , our current recommendation at some t is the
correct policy π˚ and we haven’t stopped yet, we can lower bound cpt, δq in a way
that depends on the characteristic time and properties of the no-regret learners. We
start with assuming our current recommendation at some t is the correct policy π˚

and we have the event ET ,

cpt, δq ě inf
λPΛF pµ̂tq

t
ÿ

s“1

K
ÿ

a“1
wa,sKLpµ̂a,t, λaq ´ p1 `

?
tqK

which follows from Tracking Lemma C.3. We now use a concentration result, originally
in Appendix D.1 of Degenne, Koolen, and Ménard (2019),

cpt, δq ě inf
λPΛF pµ̂tq

t
ÿ

s“1

K
ÿ

a“1
wa,sKLpµ̂a,s, λaq ´ p1 `

?
tqK ´ Op

a

t log tq. (C.3)
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This steps follows from the Lipschitz property of the KL and the fact we have
conditioned on ET (see Step 8 for further details). Hence,

|KLpµa, λaq ´ KLpµ̂a,s, λaq| ď L

d

2σ2 fpsq

Na,s

which implies that

t
ÿ

s“1

K
ÿ

a“1
wa,sKLpµ̂a,t, λaq ě

t
ÿ

s“1

K
ÿ

a“1
wa,sKLpµa, λaq ´ L

a

2σ2Ktfptq.

Using the same result one more time yields

t
ÿ

s“1

K
ÿ

a“1
wa,sKLpµ̂a,t, λaq ě

t
ÿ

s“1

K
ÿ

a“1
wa,sKLpµ̂a,s, λaq ´ L

a

2σ2Ktfptq ´ 2L
a

2σ2fptq
´

K2
` 2

?
2Kt

¯

which gives the result in Equation (C.3).
Step 4: Defining Approximate Optimistic Saddle Point under Con-

straints. We now introduce concepts and properties that will help us to further
lower bound the RHS in Equation (C.3). We extend the definition of an approximate
optimistic saddle point algorithm from Degenne, Koolen, and Ménard (2019) to the
constraint setting.
Definition C.1. An algorithm playing sequences of pws, λsqsďt P pΠ ˆ ΛFq

t is said
to be an approximate optimistic saddle point algorithm with slack xt if

inf
λPΛF pµq

t
ÿ

s“1

K
ÿ

a“1
ws,aKLpµ̂a,s, λaq ě max

wPΠ

K
ÿ

a“1

t
ÿ

s“1
waUa,s ´ xt, (C.4)

where xt is defined in Eq. (C.7) and the confidence bound

Ua,s “ max
"

fptq

Na,s

, max
ξPrαa,s,βa,ss

KLpξ, , λa,sq

*

.

The difference in Definition C.1 compared to the definition of an approximate
optimistic saddle point algorithm in Degenne, Koolen, and Ménard (2019) is that
we in Equation C.4 take the maximum over Π and instead of arms as in Degenne,
Koolen, and Ménard (2019). This is due to the fact that maximum over arms might
not be in the set of feasible exploration policies Π.

Step 5: Definition of Regret of the Two Players. We define the regret of
the allocation player, i.e. AdaGrad, as

Rw
t “ max

wPΠ

t
ÿ

s“1

K
ÿ

a“1
waUa,s ´

t
ÿ

s“1

K
ÿ

a“1
wa,tUa,s (C.5)
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and note that AdaGrad has an regret scaling of Rt
w ď Op

?
Qtq where Q is an upper

bound on the losses such that Q ě maxx,yPrµmin,µmaxs KLpx, yq. For the instance player
we define the regret as

Rλ
t “

t
ÿ

s“1

K
ÿ

a“1
wa,sKLpµ̂a,s, λa,sq ´ inf

λPΛF pµq

t
ÿ

s“1

K
ÿ

a“1
wa,sKLpµ̂a,s, λaq (C.6)

and note that Rt
λ ď 0 since the instance player is performing a best-response against

ws at each s.
Step 6: CGE is an Approximate Optimistic Saddle Point Algorithm

We now show that the CGE is an approximate optimistic saddle point algorithm.
From the regret properties of λ player we have

inf
λPΛF pµq

t
ÿ

s“1

K
ÿ

a“1
ws,aKLpµ̂a,s, λaq ě inf

λPΛF pµq

t
ÿ

s“1

K
ÿ

a“1
ws,aKLpµ̂a,s, λa,sq

since Rt
λ ď 0.

Let Ca,s “ Ua,s ´ KLpµ̂a,s, λa,sq. We have

inf
λPΛF pµq

t
ÿ

s“1

K
ÿ

a“1
ws,aKLpµ̂a,s, λaq ě inf

λPΛF pµq

t
ÿ

s“1

K
ÿ

a“1
ws,aUa,spλq ´

t
ÿ

s“1

K
ÿ

a“1
ws,aCa,s.

Now, we can combine Eq. (C.3) and (C.5) to get

cpt, δq ě inf
λPΛF µ

t
ÿ

s“1

K
ÿ

a“1
ws,aUa,spλq ´

t
ÿ

s“1

K
ÿ

a“1
ws,aCa,s ´ p1 `

?
tqK ´ Op

a

t log tq

Now we use the properties of Rw
t to get

inf
λPΛF pµq

t
ÿ

s“1

K
ÿ

a“1
ws,aKLpµ̂a,s, λsq ě max

wPΠ

K
ÿ

a“1

t
ÿ

s“1
waUa,s ´ Rt

w ´

t
ÿ

s“1

K
ÿ

a“1
wa,sCa,s

which shows that CGE is an approximate optimistic saddle point algorithm with
slack

xt “ Rw
t `

t
ÿ

s“1

K
ÿ

a“1
ws,aCa,t. (C.7)

Step 7: Plug slack xt into Equation (C.3). We now use the fact that CGE
is an approximate optimistic saddle point algorithm in Equation (C.3)

cpt, δq ě max
wPΠ

K
ÿ

a“1

t
ÿ

s“1
waUa,s ´ Rw

t ´

t
ÿ

s“1

K
ÿ

a“1
ws,aCa,t ´ p1 `

?
tqK ´ Op

a

t log tq

(C.8)

Step 8: Concentration of
řK

a“1 ws,aCa,t
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Assume the event ET . We have

|KLpµa, λaq ´ KLpµ̂a,s, λaq| ď LKLpµ̂a,s, µaq

due to the Lipschitz property of the KL-divergence and under the event ET we have

|KLpµa, λaq ´ KLpµ̂a,s, λaq| ď L

d

2σ2 fpsq

Na,s

.

This implies that

sup
ξPrαa,s,βa,ss

Ua,s ´ KLpξ, λa,sq ď max
#

2L

d

2σ2 fpsq

Na,s

,
fpsq

Na,s

+

since either Ua,s “ maxξPrαa,s,βa,ss KLpξ, , λa,sq and the above is equal to the width of
the confidence interval, or Ua,s “

fpsq

Na,s
and the above is trivially bounded fpsq

Na,s
since

the KL divergence is non-negative. Hence,

t
ÿ

s“K`1

K
ÿ

a“1
ws,aCa,s ď

t
ÿ

s“K`1

K
ÿ

a“1
ws,a

˜

fpsq

Na,s

` 2L

d

2σ2 fpsq

Na,s

¸

ď fptq
t
ÿ

s“K`1

K
ÿ

a“1

ws,a

Na,s

` 2L
a

2σ2fptq
t
ÿ

s“K`1

K
ÿ

a“1

ws,a
a

Na,s

ď fptq

ˆ

K2
` 2K log t

K

˙

` 2L
a

2σ2fptq
´

K2
` 2

?
2Kt

¯

ď Op
a

t log tq.

We have

cpt, δq ě max
wPΠ

K
ÿ

a“1

t
ÿ

s“1
waUa,s ´ Rw

t ´ Op
a

t log tq ´ p1 `
?

tqK ´ Op
a

t log tq.

Step 9: Optimism
We now use the fact that Ua,s ě KLpµa, λaq under the event ET . Hence,

cpt, δq ě max
wPΠ

K
ÿ

a“1

t
ÿ

s“1
waKLpµa, λa,sq ´ Rw

t ´ Op
a

t log tq ´ p1 `
?

tqK ´ Op
a

t log tq.

Step 10: Get the Characteristic Time We note that

max
wPΠ

K
ÿ

a“1

t
ÿ

s“1
waKLpµa, λa,sq ě t inf

λPΛF pµq
max
wPΠ

K
ÿ

a“1
waKLpµa, λaq

ě max
wPΠ

inf
λPΛF pµq

K
ÿ

a“1
waKLpµa, λaq “ tT ´1

F pµq.



Paper 6. Pure exploration in bandits with linear constraints 215

Rearanging yields

t ď TFpµqcpt, δq ` Rw
t ` Op

a

t log tq

Step 11: Current Recommendation is the Wrong Policy. The above
result is conditioned on the fact that our current recommendation is correct. We
now bound the number of time steps where the current recommendation is wrong,
using similar argument as in Degenne, Koolen, and Ménard (2019).

We define the Chernoff information as chpx, yq fi infuPD : KLpu, xq ` KLpu, yq.
Assumption 1 gives that there D ϵ ą 0 such that @λ P ΛFpµq, Da1 such that
chpλa1 , µa1q ą ϵ.

Assume that π˚ ‰ arg maxπPF µ̂J
t π, i.e. if we stop we would recommend the

wrong policy. This implies that µ̂t P ΛFpµq and chpµ̂a,t, µaq ě ϵ for some arm a.
Under the good event ET we have Na,tKLpµ̂a,t, µaq ď fptq which implies that fptq

Na,t
ě ϵ,

since chpµ̂a,t, µaq ď KLpµ̂a,t, µaq.
Let πs fi arg maxπPF µ̂J

s π, let nπ1ptq be the number of stages where πs “ π1.
Our goal is to upper bound nπ1ptq for all extreme points π1 P F such that 1π1 ‰ π˚.
For any λ such that π1 “ arg maxπPF λJπ we have that µ P ΛFpλq which gives

ϵt “

t
ÿ

s“1,πs‰π˚

K
ÿ

a“1
wa,sKLpµ̂a,s, µaq ě

ÿ

π1‰π˚

inf
λ:π1‰arg maxπ λJπ

t
ÿ

s“1,πs“π1

K
ÿ

a“1
wa,sKLpµ̂a,s, λaq.

We use the fact that on the time steps where πs “ π1 CGE is a optimistic saddle
point algorithm with slack x “ Rw

nπ1 ptq `
řt

s“1,πs“π1

řK
a“1 ws,aCa,t. Hence,

inf
λ:π1‰arg maxπ λJπ

t
ÿ

s“1,πs“π1

K
ÿ

a“1
wa,sKLpµ̂a,s, λaq ě

max
πPΠ

t
ÿ

s“1,πs“π1

K
ÿ

a“1
waUa,s ´ Rw

nπ1 ptq ´

t
ÿ

s“1,πs“π1

K
ÿ

a“1
wa,sCa,s.

Under the event ET , and s ď t such that πs “ π1 there is an arm as such that
Uas,s ě ϵ. This implies that the sum maxπPΠ

řt
s“1,πs“π1

řK
a“1 waUa,s is increasing

linearly in nπ1ptq since it is at least ϵnπ1ptq under the concentration event ET . Thus,

inf
λ:π1‰arg maxπ λJπ

t
ÿ

s“1,πs“π1

K
ÿ

a“1
wa,sKLpµ̂a,s, λaq ě ϵnπ1ptq ´ Rw

nπ1 ptq ´

t
ÿ

s“1,πs“π1

K
ÿ

a“1
wa,sCa,s

and we know that Rw
nπ1 ptq “ Op

a

Qnπ1ptqq and
řt

s“1,πs“π1

řK
a“1 wa,sCa,s “ Op

a

nπ1ptq log nπ1ptqq. This shows that ϵT increases at
least linear in nπ1ptq and thus also linearly in the number of time steps for whitch
πs ‰ π˚. However, we have

ϵt “

t
ÿ

s“1,πs‰π˚

K
ÿ

a“1
wa,sKLpµ̂a,s, µaq ď

t
ÿ

s“1

K
ÿ

a“1
wa,s

fpsq

Na,s

ď fptqpK2
` 2K log t

K
q.
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This implies that the current recommendation πs “ arg max µ̂J
t π differs from π˚ at

most Op
?

t log tq number of times.
Step 12: Final Bound. We know from the concentration of ET that the number

of times the compliment happens is upper bounded by CK where C is some problem
independent constant. Putting it all together, we get that Erτ s ď T0pδq ` CK, where

T0pδq :“ max
!

t P N : t ď TFpµqcpt, δq ` Op
a

tQq ` Op
a

t log tq
)

.
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D Finding ϵ-good policies under linear constraints
In some cases one might be more interested in finding a policy that is ϵ-close to
the optimal one, i.e. finding π1 such that µJpπ˚

µ ´ π1q ď ϵ, since this might have a
much smaller sample complexity compared to searching for the optimal policy, see
for example (Garivier and Kaufmann 2021) and (Kocák and Garivier 2021). Both
CTnS and CGE can in principle be extended to this case by changing the definition
of the Alt-set. Given an instance µ let ΩF ,ϵpµq :“ tπ P NF : µJpπ˚ ´ πq ď ϵu be
the set of ϵ-good policies where NF is the set of all extreme points in the polytope
F . For each π P ΩF ,ϵpµq we get the following Alt-set

ΛF ,ϵpµ, πq :“
␣

λ : λJ
pπ˚

λ ´ πq ą ϵ
(

.

Hence, the sample complexity might be different depending on which near-optimal
policy the learner is considering. To handle this we would have to augment CTnS and
CGE with the “sticky” approach developed in (Degenne and Koolen 2019), where
the learner commits to a recommendation since otherwise the learner might oscillate
between near-optimal policies and a mixture of their optimal allocations might not
be optimal since w˚pµq is no longer ensured to be convex. Furthermore, due to ϵ ą 0
it is no longer sufficient to project onto the normal cone and a naive implementation
would have to optimize over |NF | convex sets which might only be tractable for a
small set of constraints and/or arms.
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E Additional experimental analysis
In Figure 6.6 and 6.7 we present results for arms with Bernoulli distributions and in
Figure 6.8 and 6.9 we present additional results for arms with Gaussian distributions.
CTnS and CGE outperforms the uniform baseline in all cases and are usually on par
with or better than the learner that always sample according to the asymptotically
optimal allocation. We also see that the algorithms tend to be close to the lower
bound in all cases. An interesting observation, which we commented on already in
the main text, is that there tend to be a larger difference between all sampling rules
for end-of-time constraints compared to anytime constraints. This is due to the fact
that anytime constraints can be very restrictive on which sampling allocations are
allowed and there might not be less room for an adaptive learner.

In the case of arms with Bernoulli distributions we did not use a close-form
projection, as for Gaussian distributions, and instead computed the projection
numerically by minimizing the KL-divergence subject to λJpπ˚ ´ π1q “ 0, which is
a convex problem. We discuss the effect of this in Section E.1
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(a) End-of-time constraints
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(b) Anytime constraints

Figure 6.6: End-of-time and Anytime constraints with Bernoulli arms. The reward
vector is µ “ p0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2q and the constraints are π1 ` π2 ď 0.5
and π3 `π4 ď 0.5. Average over 500 seeds and δ “ 0.1. Optimal policy is π1 “ 0.5
and π3 “ 0.5.



Paper 6. Pure exploration in bandits with linear constraints 219

CTnS CGE Optimal Uniform
0

5000

10000

15000

20000

25000

St
op

pi
ng

 T
im

e

Lower Bound

(a) End-of-time constraints
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(b) Anytime constraints

Figure 6.7: End-of-time and Anytime constraints with Bernoulli arms. The reward
vector is µ “ p0.8, 0.7, 0.6, 0.5, 0.4q and the constraints are 4π1 ´ π5 ď 1 and
3π2 ´ π4 ď 1. Average over 500 seeds and δ “ 0.1. Optimal policy is π1 “ 0.25,
π2 “ 0.33 and π3 “ 0.42.
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(a) End-of-time constraints
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Figure 6.8: End-of-time and Anytime constraints with Gaussian arms σ2 “ 1.
The reward vector is µ “ p2.0, 1.5, 1.45, 0.5, 0.3, ´1.0, ´1.0q and the constraints
are 4π1 ` π2 ď 0.7 and π2 ` 2π3 ď 0.5. Average over 1000 seeds and δ “ 10´4.
Optimal policy is π1 “ 0.05, π2 “ 0.5 and π4 “ 0.45.

E.1 Running times

In Table 6.2 we present the average time it take for the algorithms to check the
stopping criterion and select a new arm to play. The test was performed on 1 core of
a Intel Xeon Gold 6130 CPU with 2.1 GHz. Gaussian indicates the experiments in
Figure 6.8a, Bernoulli the experiments in Figure 6.6a and IMDB the experiments in
Figure 6.5b. As expected CTnS is the algorithm requiring most computational time
and the excessive running time it has on the experiment with Bernoulli distributions
is due to the fact that we numerically solve the projection instead of relying on
a close-form expression as in the case of Gaussian distributions. In contrast, we
see that CGE has a relatively light computational footprint in all cases. Another
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Figure 6.9: End-of-time and Anytime constraints with Gaussian arms σ2 “
1. The reward vector is µ “ r1.0, 0.5, 0.4, 0.3, 0.2, 0.1s and the constraints are
π1 ´ π4 ´ π5 ´ π6 ď 0.3 and π2 ď 0.7. Average over 1000 seeds and δ “ 10´3.
Optimal policy is π1 “ 0.65 and π4 “ 0.35.

advantage of CGE is that it performs a finite number of max calls at each iteration
which can easily be parallelized for larger bandit instances with many constraints.

Algorithm Bernoulli Gaussian IMDB

CTnS 1.00 ˘ 0.244 0.030 ˘ 0.006 0.033 ˘ 0.015

CGE 0.02 ˘ 0.001 0.005 ˘ 0.001 0.008 ˘ 0.001

Uniform 0.009 ˘ 3 ˆ 10´4 0.001 ˘ 1 ˆ 10´4 0.002 ˘ 2 ˆ 10´4

Table 6.2: Average time, in seconds, it takes to check the stopping criterion
and select a new arm for the different algorithms. The˘ indicates one standard
deviation. We omitted the optimal sampler since this one has the same running
time as the uniform sampler.
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E.2 IMDB environment
For resproducibility, here we provide the specifics of the IMDB data in the Table 6.3
as used in the experiments (Figure 6.5).

Movie Average Rating σ Action Drama Family

The Net 3.67 1.26 1 1 0

Happily N’Ever After 2.97 1.30 0 0 1

Tomorrowland 2.94 1.31 1 0 1

American Hero 3.52 1.33 1 1 0

Das Boot 3.18 1.30 0 1 0

Final Destination 3 2.02 0.93 0 0 0

Licence to Kill 2.79 1.22 1 0 0

The Hundred-Foot Journey 2.97 1.31 0 1 0

The Matrix 2.32 1.14 1 0 0

Creature 2.53 1.20 0 0 0

The Basket 2.55 1.19 0 1 0

Star Trek: The Motion Picture 2.54 1.16 0 0 0

Table 6.3: Movies used in the experiments presented in Figure 6.5. The optimal
policy is π˚

1 “ 0.3, π˚
2 “ 0.3 and π˚

5 “ 0.4. We used the maximum σ in the
algorithms. This means that the algorithms didn’t have access to the true σ of
each arm and instead modelled them all as Gaussian distributions with σ “ 1.33
but the rewards were sampled from the environment using the true σ.
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F On the sub-optimality of PTnS
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Figure 6.10: Problem instance with 8 Gaussian arms with σ “ 1. The arm
means are µ “ r1.0, 0.7, 0.3, 0.0, ´0.5, ´1.0, ´2.0, ´3.0s and we have one constraint
7π1 ` 7π2 ` π3 ď 0.5. The optimal policy is π3 “ π4 “ 0.5. Results for δ “ 0.1
and 1000 random seeds.

In Figure 6.10, we consider an eight-armed bandit with Gaussian reward distri-
butions with means

µ “ r1.0, 0.7, 0.3, 0.0, ´0.5, ´1.0, ´2.0, ´3.0s,

variance 1, and the constraint 7π1 ` 7π2 ` π3 ď 0.5.
We observe that PTnS performs the worst on this instance, specially in the

end-of-time setting. This reflects the fact that the optimal allocation w.r.t. classical
BAI bound does not have to be close to the optimal allocation given by the constraint
version of the lower bound.

In Figure 6.10b, the optimal allocation for the constraint problem is

w˚
“ r0.09, 0.02, 0.43, 0.36, 0.03, 0.02, 0.02, 0.02s,

while the unconstrained optimal BAI allocation with the same µ is

ŵ “ r0.43, 0.42, 0.05, 0.03, 0.02, 0.02, 0.02, 0.02s.

Hence, PTnS focuses on exploring arm 1 and 2 the most, which makes sense without
any constraints. In contrast, the optimal allocation under constraint, i.e. w˚, suggests
that one should focus on arm 3 and 4 as the constraint puts a disproportional cost
on arm 1 and 2.

In the anytime scenario, Figure 6.10a, the optimal allocation is

w˚
“ r0.02, 0.01, 0.32, 0.54, 0.03, 0.03, 0.03, 0.03s.

In this scenario, the allocation ŵ, computed by PTnS, is no longer feasible and PTnS
instead converges to the projected version

w1
“ r0.03, 0.02, 0.12, 0.18, 0.16, 0.16, 0.16, 0.16s.
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We observe that the previous issue is now mitigated by the projection, PTnS is
no longer overly obsessed with arm 1 and 2. However, another issue arises as the
projection distributes a substantial probability to the arms 5 ´ 8, which are highly
sub-optimal. These phenomena lead to worse performance of PTnS w.r.t. CTnS and
CGE, as shown in Figure 6.10a.
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G Useful definitions and results
Definition G.1 (Upper hemicontinuity). We say that a set-valued function C :
Θ Ñ Ω is upper hemicontinuous at the point θ P Θ if for any open set S Ă Ω with
Cpθq Ă S there exists a neighborhood U around θ, such that @x P U , Cpxq is a
subset of S.

Theorem G.1 (Berge’s maximum theorem (Berge 1963)). Let X and Θ be topological
spaces. Let f : X ˆΘ Ñ R be a continuous function and let C : Θ Ñ X be a compact-
valued correspondence such that Cpθq ‰ H @θ P Θ. If C is continuous at θ then
f˚pθq “ supxPCpθq fpx, θq is continuous and C˚ “ tx P Cpθq : fpx, θq “ f˚pθqu is
upper hemicontinuous.

Below we restate the upper bound on the sample complexity of the Gamified
Explorer (GE) of Degenne, Koolen, and Ménard (2019).

Theorem G.2 (Theorem 2 in Degenne, Koolen, and Ménard (2019)). The sample
complexity of GE is

Erτ s ď T0pδq `
eK

a

where

T0pδq “ maxtt P N : t ď T pµqcpt, δq ` CµpRλ
t ` Rw

t ` Op
a

t log tqqu

where Rλ
t is the regret of the instance player, Rw

t the regret of the allocation player
and Cµ an instance-dependent constant.
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Abstract

Learning an ordering of items based on pairwise comparisons is useful
when items are difficult to rate consistently on an absolute scale, for
example, when annotators have to make subjective assessments. When
exhaustive comparison is infeasible, actively sampling item pairs can
reduce the number of annotations necessary for learning an accurate
ordering. However, many algorithms ignore shared structure between
items, limiting their sample efficiency and precluding generalization to
new items. It is also common to disregard how noise in comparisons
varies between item pairs, despite it being informative of item similarity.
In this work, we study active preference learning for ordering items
with contextual attributes, both in- and out-of-sample. We give an
upper bound on the expected ordering error of a logistic preference
model as a function of which items have been compared. Next, we
propose an active learning strategy that samples items to minimize
this bound by accounting for aleatoric and epistemic uncertainty in
comparisons. We evaluate the resulting algorithm, and a variant aimed
at reducing model misspecification, in multiple realistic ordering tasks
with comparisons made by human annotators. Our results demonstrate
superior sample efficiency and generalization compared to non-contextual
ranking approaches and active preference learning baselines.

1 Introduction
The success of supervised learning is built on annotating items at great volumes
with small error. For subjective assessments, however, assigning a value from an
arbitrary rating scale can be difficult and prone to inconsistencies, causing many to
favor preference feedback from pairwise comparisons (Yannakakis and Martínez 2015;
Christiano et al. 2017; Ouyang et al. 2022; Zhu et al. 2023). Preference feedback is
sufficient to learn an ordering of items (Fürnkranz and Hüllermeier 2003), but for
n items, there are Opn2q possible pairs of items to compare. A common solution is
to use crowd-sourcing (Chen, Bennett, et al. 2013; Yang et al. 2021; Larkin et al.
2022), but many tasks require domain expertise, making annotations expensive to
collect. This is the case in the field of medical imaging, where annotations require
trained radiologists (Phelps et al. 2015; Jang et al. 2022; Lidén et al. 2024; Tärnåsen
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232 1. Introduction

and Bergström 2023). So, how can we learn the best ordering possible from a limited
number of comparisons?

Classically, this problem is solved by active learning, sampling comparisons based
on preference feedback and estimated item scores (Herbrich et al. 2006; Maystre
and Grossglauser 2017; Heckel et al. 2018). However, consider a radiologist who
wants to quantify the expression of a disease in a collection of X-ray images. Purely
preference-based algorithms utilize only the outcomes of comparisons but ignore
the contents of the X-rays, which can reveal similarities between items and inform
an ordering strategy. Moreover, the set we want to order is often larger than the
set of items observed during training—we may want to rank new X-rays in relation
to previous ones. This cannot be solved by learning per-item scores alone. As an
alternative, active learning for classification can be used to fit a map from pairs of
item contexts xi, xj (e.g., the contents of images) to the comparison i ą? j, that
can be applied to old and new items alike (Houlsby et al. 2011; Qian et al. 2015).
However, as we show in Section 4, learning this map to recover a complete ordering
is distinct from the tasks preference learning is commonly used for, and existing
algorithms lack theoretical justification for this application. Moreover, formal results
for related problems, such as contextual bandits or reinforcement learning (Das et al.
2024; Filippi et al. 2010; Zhu et al. 2023; Bengs, Saha, et al. 2022), do not translate
directly to effective active sampling criteria for ordering. There is a small body of
work on learning a contextual model to recover the complete ordering (Jamieson
and Nowak 2011; Ailon 2011) but these either assume noiseless preference feedback
or that the noise is unrelated to the similarity of items, which is unrealistic for
subjective assessments.

Contributions. We propose using a contextual logistic preference model to support
efficient in-sample ordering and generalization to new items. Our analysis yields
the first bound on the expected ordering error achievable given a collected set of
comparisons (Section 4). This result justifies an active sampling principle that
accounts for both epistemic and aleatoric uncertainty which we implement in a
greedy deterministic algorithm called GURO (Section 5). We further propose a
hybrid variant of the contextual preference model, compatible with GURO as well
as existing sampling strategies, that overcomes model misspecification by adding
per-item parameters (Section 5.1). We evaluate GURO and baseline algorithms
in four diverse ordering tasks, three of which utilize comparisons performed by
human annotators (Section 6). Our sampling strategy compares favorably to active
preference learning baselines, and our hybrid model benefits both GURO and other
sampling criteria, achieving the low variance of contextual models and the low bias
of fitting per-item parameters. This results in faster convergence in-sample, better
generalization to new items, and efficient continual learning when new items are
added.
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2 Ordering items with active preference learning
Our goal is to learn an ordering of items I according to an unobserved score yi P R,
defined for each item i P I. The ground-truth ordering of I is determined by a
comparison function πij :“ 1ryi ą yjs, where πij “ 1 indicates that i ranks higher
than j. We assume there are no ties.

We define the ordering error RIphq of a learned comparison function h : I ˆ I Ñ

t0, 1u as the frequency of pairwise inversions under a uniform distribution of item
pairs,

RIphq “
2

npn ´ 1q

ÿ

i‰jPI
1rhpi, jq ‰ πijs , (2.1)

where n “ |I|. This error is equivalent to the normalized Kendall’s Tau dis-
tance (Kendall 1948).

Hypotheses h are learned from preference feedback—noisy pairwise comparisons
Cij P t0, 1u for items pi, jq related to their score, for example, provided by human
annotators. Cij “ 1 indicates that an annotator perceived that item i has a higher
score than j, i.e., that they prefer i over j. Our goal is to minimize the ordering
error RIphq for a fixed budget T ě 1 of adaptively chosen comparisons.

We are interested in contextual problems, where each item i P I is endowed with
item-specific attributes xi P X Ď Rd. As we will see, this permits more sample-
efficient ordering and learning algorithms that can order items out-of-sample, trained
on comparisons of a subset of items ID Ď I and generalizing to IzID. Ordering
algorithms based only on preference feedback cannot solve this problem since observed
comparisons are uninformative of new items.

Our active preference learning scenario proceeds as follows:

• A learner is given an annotation budget T , a pool of items ID Ď I and item
attributes xi for i P ID.

• Over rounds t “ 1, ..., T , the learner requests a comparison of two items
it, jt P ID according to a sampling criterion and receives noisy binary preference
feedback ct „ ppCijq, independently of previous comparisons.

• After T rounds, the learner returns a comparison function h : I ˆ I Ñ t0, 1u.

We denote the history of accumulated observations until and including time t by
Dt “ ppi1, j1, c1q, ..., pit, jt, ctqq.

We assume that comparisons Cij follow a logistic model applied to the dif-
ference between item scores, ppCij “ 1q “ σpyi ´ yjq, the so-called Bradley-Terry
model (Bradley and Terry 1952), which assumes linear stochastic transitivity (Oliveira
et al. 2018). Throughout, σpzq “ 1{p1`e´zq and 9σpzq its derivative at z. Specifically,
we study the case where yi is a linear function of item attributes, yi “ θJ

˚ xi , with
θ˚ P Rd the ground-truth coefficients. Thus, comparisons are determined by a logistic
regression model applied to the attribute difference vector zij :“ xi ´ xj,

ppCij “ 1q “ σpθJ
˚ zijq . (2.2)
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We face two kinds of uncertainty when actively learning the model in (2.2): epistemic
and aleatoric. Epistemic uncertainty, or model uncertainty, is the uncertainty about
the true parameter θ˚, while aleatoric uncertainty is the irreducible uncertainty about
labels due to noisy annotation.

3 Related work
Active Preference Learning: Preference learning (Fürnkranz and Hüllermeier
2003; Chu and Ghahramani 2005) is related to the problem of learning to rank (Burges
et al. 2005; Busse et al. 2012). When using adaptively chosen comparisons it may be
posed as an active learning or bandit problem (Brinker 2004; Long et al. 2010; Silva et
al. 2014; Ling et al. 2020). Non-contextual active learners, such as TrueSkill (Herbrich
et al. 2006; Minka et al. 2018), Hamming-LUCB (Heckel et al. 2018), and Probe-
Rank (Lou et al. 2022) produce in-sample preference orderings, but must be updated
if new items are to be ranked. Contextual algorithms, such as BALD (Houlsby et al.
2011), mitigate this by exploiting item structure and Kirsch and Gal (2022) show
that many recently proposed contextual active learning strategies may be unified in
a framework based on Fisher information. Similarly, methods have been proposed to
recover a linear preference model by adaptively sampling paired comparisons (Qian
et al. 2015; Massimino and Davenport 2021; Canal et al. 2019). Still, this setting
differs from ours in that we emphasize recovering the full ordering, not perfectly
estimating the parameters. While it is true that knowing the parameters is sufficient
to order the list, reducing uncertainty for all parameters equally will likely be wasteful
(see Section 4). Ailon (2011) offer guarantees for ordering using contextual features
in the noiseless setting, while Jamieson and Nowak (2011) analyze the setting where
noise is unrelated to item similarity.

Bandits: Bandit algorithms with relative or dueling feedback (Yue and Joachims
2009; Bengs, Busa-Fekete, et al. 2021; Yan et al. 2022) also learn from pairwise
comparisons, and have been proposed both in contextual (Dudík et al. 2015) and
non-contextual settings (Yue, Broder, et al. 2012) to minimize regret or identify
top-k items. Bengs, Saha, et al. (2022) proposed CoLSTIM, a contextual dueling
bandit for regret minimization under linear stochastic transitivity, matching (2.2),
and Di et al. (2023) gave variance-aware regret bounds for this setting. However,
algorithms that find the top-k items, such as pure exploration bandits (Fang 2022;
Jun et al. 2021), can be arbitrarily bad at learning a full ordering (see Appendix A).
Related are also George and Dimitrakakis (2023) who learn Kemeny rankings in
non-contextual dueling bandits, and Wu, Jin, et al. (2023) who minimize Borda
regret. Zhu et al. (2023) studies the problem of estimating a preference model from
offline data. Our analysis uses techniques from logistic bandits (Filippi et al. 2010;
Li et al. 2017; Faury et al. 2020; Kveton et al. 2020).

RLHF: Preference learning is commonly used when training large language models
through reinforcement learning with human feedback (RLHF) (Christiano et al. 2017;
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Bai et al. 2022; Ouyang et al. 2022; Wu, Zhu, et al. 2023). In this line of work, Zhu
et al. (2023) provide guarantees on the sample complexity of learning a preference
model from offline data. They leverage similar tools from statistical learning and
bandits as we do. In contrast to their work, we provide sampling strategies for the
online setting. Mehta et al. (2023) consider active learning for RLHF in a dueling
bandit framework where the goal is to optimize a contextual version of the Borda
regret. Concurrent work by Mukherjee et al. (2024) and Das et al. (2024) studies
a similar problem, as we do here, in the RLHF setting but with the objective to
identify an optimal policy in a contextual bandit with dueling feedback. In contrast
to their objective, we are interested in recovering the ordering of items. Das et al.
(2024) use similar bandit techniques as we do, and their selection criterion, when
adapted for ordering, corresponds to our NormMin baseline (see Section 6).

4 Which comparisons result in a good ordering?
We give an upper bound on the ordering error RIphq for a hypothesis h fit using a
set of T comparisons. The bound is retrospective, attempting to answer the question
“if we collect comparisons DT , how good is our resulting model at ordering the items
in I?”. In Section 5, we use insights from the result to design an active learning
algorithm.

We restrict our analysis to the logistic model in (2.2) and denote by Rpθq ” RIphθq

the risk of the hypothesis defined by hθpi, jq “ 1rθJzij ą 0s. Recall that zij “ xi ´ xj

for i, j P I, and define zt ” zitjt as the difference between attributes for the pair of
items selected at round t. Let θt be the maximum-likelihood estimate (MLE) fit to t
rounds of feedback, Dt

θt “ arg max
θ

t
ÿ

s“1

`

cs log σpθJzsq ` p1 ´ csqp1 ´ σpθJzsqq
˘

. (4.1)

Let ∆ij ą 0 lower bound the margin of comparison, |σpzJ
ijθ˚q ´ 1{2| ą ∆ij for

all i, j P I and define ∆˚ “ mini‰j ∆ij{|i ´ j|. Next, let Htpθq :“
řt

s“1 9σpzJ
s θqzsz

J
s

be the Hessian of the negative log-likelihood of observations at time t under (2.2),
given the parameter θ, also known as observed Fisher information. We define
H̃tpθq :“ 1

t
Htpθq. For a square matrix V , we define }x}V “

?
xJV x. We make the

following assumptions for our analysis:

Assumption 4.1. θ˚ satisfies }θ˚}2 ď S for some S ą 0.

Assumption 4.2. @i P I, we have }xi}2 ď Q for Q ą 0.

Assumption 4.3. HT pθT q and HT pθ˚q have full rank and minimum eigenvalues
larger than λ0 ą 0.

Assumption 4.1 implies that θ˚ lies in some ball with radius S and cannot have
unbounded coefficients. Assumption 4.2 states that there exists an upper bound on
the norm of the feature vectors. This assumption is trivially satisfied whenever we
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have a finite set of data points. Both assumptions 4.1 and 4.2 are standard in the
bandit literature and only required for our analysis. Assumption 4.3 is naturally
satisfied for sufficiently large T by any sampling strategy with support on d linearly
independent vectors, or can be ensured by allowing for a burn-in phase of d samples
in the beginning of an adaptive strategy. Assumption 4.3 ensures the uniqueness of
θt.

We start by stating the following concentration result for the deviation of σpzJ
ijθT q

from the true probability σpzJ
ijθ˚q. The proof of Lemma 4.1 is found in Appendix A

and builds on results for optimistic algorithms in logistic multi-armed bandits (Filippi
et al. 2010; Faury et al. 2020).

Lemma 4.1 (Concentration Lemma). Define, for all pairs of items i, j P I, and any
∆ ą 0,

αijp∆q :“ exp
˜

´∆2T

8dC1p 9σpzJ
ijθT q}zij}H̃´1

T pθT qq
2

¸

, βijp∆q :“ exp
˜

´∆T

dC1}zij}2
H̃´1

T pθT q

¸

.

Then, if α :“ αijp∆q, β :“ βijp∆q and α, β ď 1
4dT

,

P
`

|σpzJ
ijθ˚q ´ σpzJ

ijθT q| ą ∆
˘

ď 2dT pα ` βq .

C1 depends on S, λ0, Q from Assumptions 4.1–4.3 (see Appendix A for definition and
proof).

The concentration result in Lemma 4.1 is verifiable (given by observables) since
the upper bound depends only on the maximum likelihood estimate θT at time T ,
not on θ˚. We present a sharper, unverifiable bound in Appendix A which instead
depends on θ˚ but does not suffer from the explicit scaling with d in the definitions
of α and β. The bound in Lemma 4.1 can also be expressed in terms of H´1

T pθT q

by using the equality ||zij||2H´1
T pθT q

“ 1
T

||zij||2H̃´1
T pθT q

. As long as our sampling strategy
ensures that the minimum eigenvalue of H̃tpθtq does not tend to zero, i.e., the strategy
is strongly consistent (Chen, Hu, et al. 1999), we have

αijp∆ijq „ expr´∆2
ijT {p 9σpzJ

ijθT q
2
}zij}

2
H̃´1

T pθT q
qs

and
βijp∆ijq „ expr´∆ijT {}zij}

2
H̃´1

T pθT q
s.

. Since ∆2
ij ă ∆ij ă 1{2 by definition, we can view α as the first-order term and β

as the second-order term of our bound.
Lemma 4.1 formally captures the intuition that it should be easier to sort

when annotations contain little noise, i.e., 9σpzJ
ijθT q is small. Especially, we observe

9σpzJ
ijθT q « 0 for pairs where ∆ij is sufficiently large, causing the first-order term to

vanish, leaving us with the faster decaying second-order term β. Lemma 4.1 also tells
us that the hardest pairs to guarantee a correct ordering for are the ones with both
high aleatoric uncertainty under the MLE model, e.g., where annotators disagree or
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labels are noisy, captured by 9σpzJ
ijθT q, as well as high epistemic uncertainty captured

by ||zij||H̃´1
T pθT q.

A direct consequence of Lemma 4.1 is the following bound on the ordering error
of hθT

over I,

ErRpθT qs ď
ÿ

i‰j

2 min t2dT pαijp∆ijq ` βijp∆ijqq , 1u

npn ´ 1q
.

The right-hand side in the above inequality can be bounded further by utilizing that
∆ij ě |i ´ j|∆˚. Together with Markov’s inequality, this yields the following bound
on P pRpθT q ě ϵq.

Theorem 4.2 (Upper bound on the ordering error).
Let α˚ :“ maxi‰j αijp∆˚q and β˚ :“ maxi‰j βijp∆˚q, with α, β from Lemma 4.1.
Then, for α˚, β˚ ď 1

4dT
and any ϵ P p0, 1q, the ordering error RpθT q satisfies

P pRpθT q ě ϵq ď
4dT

ϵn

´

`

α´1
˚ ´ 1

˘´1
`
`

β´1
˚ ´ 1

˘´1
¯

«
4dT

ϵn
pα˚ ` β˚q ,

where α˚ and β˚ decay exponentially with T .

Theorem 4.2 suggests that the probability of RpθT q ě ϵ decays exponentially with
a rate that depends on the quantities maxi,j 9σpzJ

ijθT q}zij}H̃´1
t pθT q and maxi,j }zij}2

H̃´1
t pθT q

.
Both quantities are random variables that depend on the particular sampling strategy
that yields Ht. Focusing on the leading term, maxi,j 9σpzJ

ijθT q}zij}H̃´1
t pθT q, Theorem 4.2

suggests that an active learner should gather data to minimize this quantity and
obtain the smallest possible bound. The factor }zij}2

H̃´1
T pθT q

is the weighted norm of
zij w.r.t. the inverse of the observed Fisher information (cf. Kirsch and Gal (2022)).
It controls the shape of the confidence ellipsoid around θT and the width of the confi-
dence interval around θJ

T zij . The leading term in Theorem 4.2 re-scales this quantity
with aleatoric noise under the MLE estimate θT . This suggests that higher epistemic
(model) certainty is needed in directions with high aleatoric uncertainty—where item
similarity increases noise in comparisons.

In Appendix A.3, we comment on i) generalizations to regularized preference
models, ii) applications to generalized linear models with other link functions, iii)
lower bounds on the ordering error, and iv) an algorithm-specific upper bound.

5 Greedy uncertainty reduction for ordering (GURO)
We present an active preference learning algorithm based on greedy minimization of
the bound in Theorem 4.2, called GURO. We begin with fully contextual preference
models of the form σpθJzijq and return in Section 5.1 to parameterization variants
to reduce the effects of model misspecification.

The main component of the bound in Theorem 4.2 to be controlled by an active
learner is the term

max
i,jPI

9σpzJ
ijθT q}zij}H´1

T pθT q , (5.1)
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Algorithm 7.1 Greedy Uncertainty Reduction for Ordering (GURO), [BayesGURO]
Require: Training items ID, attributes X “ txiuiPId

1: Initialize θ0
2: for t “ 1, ..., T do
3: Draw pit, jtq based on θt according to (5.2) [or (5.4)]
4: Observe ct from noisy comparison (annotator)
5: Dt “ Dt´1 Y tit, jt, ctqu

6: θt “ MLEpDtq according to (4.1) [or θt “ MAPpDtq as in (A.2)] in the
Appendix

7: end for
8: Return hT

which represents the highest uncertainty in the comparison of any items i, j P I
under the model θT . A smaller value of (5.1) yields a smaller bound and a stronger
guarantee. Recall that, for any t “ 1, ..., T , θt is the MLE estimate of the ground-
truth parameter θ˚ with respect to the observed history Dt. Both factors in (5.1)
are determined by the sampling strategy that yielded the item pairs pit, jtq in DT

and, therefore, HT and θT (the results of comparisons cij are outside the control of
the algorithm, but zij are known).

Direct minimization of (5.1), for a subset ID, is not feasible without access
to comparisons cij and their likelihood under θT . Instead, we adopt a greedy,
alternating approach: In each round, a) a single pair is sampled for comparison by
maximizing (5.1) under the current model estimate, and b) θt is recomputed based
on Dt. Specifically, at t “ 1, ..., T , we sample,

it, jt “ arg max
i,jPID,i‰j

9σpzJ
ijθt´1q}zij}H´1

t´1pθt´1q . (5.2)

We refer to this sampling criterion as Greedy Uncertainty Reduction for Ordering
(GURO), since it reduces the uncertainty of θt in the direction of zij. To see this,
consider the change of Htpθtq after a single play of it, jt. The Sherman-Morrison
formula (Sherman and Morrison 1950) yields,

H´1
t pθt´1q “ H´1

t´1pθt´1q ´ 9σpzJ
t θt´1q

H´1
t´1pθt´1qztz

J
t H´1

t´1pθt´1q

1 ` 9σpzJ
t θt´1q}zt}

2
H´1

t´1pθt´1q

, (5.3)

where zt :“ zitjt . With ξ as the second term in (5.3), it holds for all i ă j P I,
with Ht´1 “ Ht´1pθt´1q, that ||zij||2H´1

t pθt´1q
“ ||zij||2H´1

t´1
´ ||zij||2ξ ď ||zij||2H´1

t´1
. The

inequality is strict for the pair it, jt in (5.2). As θt converges to θ˚, this pair becomes
representative of the maximizer of (5.1) provided there is no major systematic
discrepancy between ID and I.

Surprisingly, GURO can also be justified from a Bayesian analysis. Consider
a Bayesian model of the parameter θ with ppθq the prior belief and ppθ | Dtq the
posterior after observing the preference feedback in Dt. A natural active learning
strategy is to sample items it, jt for which the model preference is highly uncertain
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under the posterior distribution,

it, jt “ arg max
i,jPID,iăj

V̂θ|Dt´1rσpθJzijqs , (5.4)

where V̂θ|Dt´1rσpθJzijqs is a finite-sample estimate of the variance in predictions,
computed by sampling from the posterior. In Appendix A.3, we show that the first-
order Taylor expansion of the true variance is equal to the GURO criterion. Hence, we
refer to sampling according to (5.4) as BayesGURO. Unlike GURO, BayesGURO can
incorporate prior knowledge through ppθq and benefits from controlled stochasticity
through the empirical estimate V̂, which makes it appropriate for batched algorithms—
a deterministic criterion would construct batches of a single item pair. Both GURO
and BayesGURO are presented in Algorithm 7.1.

Computational Complexity: Running the algorithms requires Opn2q operations
each iteration to evaluate the sampling criteria (Equation 5.2 or 5.4) on all possible
pairs, a problem shared by many active preference learning algorithms (Qian et al.
2015; Canal et al. 2019; Houlsby et al. 2011). A way of mitigating this computational
complexity is to, at each time step, sample a fixed number of comparisons and only
evaluate on these, similar to the approach taken in Canal et al. (2019). When only
looking at a sample of m ! n2 pairs, the complexity is reduced to Opmq. While
making m too small can hurt the sample complexity, we describe in Appendix A
how we implemented this sub-sampling strategy to speed up computations in one
of our experiments and observed no noticeable change in performance. Lastly, we
want to highlight that in many realistic scenarios, the computational burden pales in
comparison to the time it takes to query an annotator.

5.1 Preference models for in- and out-of-sample ordering
Our default preference model hpi, jq “ 1rfpi, jq ą 0s is based on a fully contextual
scoring function

fθpxi, xjq “ θJ
pxi ´ xjq , (5.5)

fit with a logistic likelihood σpfpi, jqq « ppCij “ 1q. The model’s strength is that
the variance in its estimates grows with d, but not with n “ |I|, often resulting in
quicker convergence than non-contextual methods for moderate dimension d (see,
e.g., Figure 7.2c). The fully contextual model also generalizes to unseen items as
long as the attributes for ID span attributes observed for I.

The limitations of a fully contextual model are model misspecification (error due
to the functional form), and noise (error due to C not being fully determined by
X). The former can be mitigated by applying the linear model to a representation
function ϕ : X Ñ Rd1 , fθpxi, xjq “ θJpϕpxiq ´ ϕpxjqq. A good representation ϕ, e.g.,
from a foundation model, can mitigate misspecification and admit different input
modalities. As demonstrated in Figure 7.5 in the Appendix, even a representation
pre-trained for a different task can perform much better than a random initialization.1

1It is feasible to update representations during exploration (Xu et al. 2022; Singh and Chakraborty
2021), but we do not consider that here.
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Noise due to insufficiencies in X cannot be mitigated by a representation ϕpxq; If
annotators consistently compare items based on features U not included in X, no
function hpXi, Xjq can perfectly order the items. However, for in-sample ordering
of ID, adding per-item parameters ζi P R to the scoring function, one for each item
i P ID, can mitigate both misspecification and noise,

fθ,ζpxi, xjq “ θJ
pϕpxiq ´ ϕpxjqq ` pζi ´ ζjq . (5.6)

We call this a hybrid model and apply it in “GURO Hybrid” and baselines in
experiments. The term ζi ´ ζj can correct the residual of the fully contextual model,
which is small if a) the context captures the most relevant information about the
ordering, and b) the functional form θJϕpxiq is nearly well-specified. Using ζi ´ ζj

alone is sufficient in-sample, but has high variance (the dimension is n instead of
d) and poor generalization (ζi are unknown for items i R ID). In practice, we use
L2 regularization to prevent the model from learning an arbitrary θ by using the
full expressivity of ζi (see Appendix A for details). Empirically, our hybrid models
exhibit the best of both worlds: When ϕ is poor, the model recovers and competes
with non-contextual models (Figure 7.5); when ϕ is good, convergence matches fully
contextual models (Figure 7.2).

6 Experiments
We evaluate GURO (Algorithm 7.1) and GURO Hybrid (see Section 5.1) in four
image ordering tasks, one with logistic (synthetic) preference feedback, and three
tasks based on real-world feedback from human annotators2.We provide a synthetic
experiment in Appendix A.2 that includes empirical estimates of the bound in
Theorem 4.2. The experiments include five diverse baseline algorithms, described
next. BALD (Houlsby et al. 2011) is a priori the strongest baseline since it is a
contextual active learning algorithm, unlike the others. Its selection criterion greedily
maximizes the decrease in posterior entropy, which amounts to reducing the epistemic
uncertainty and includes a term to downplay the influence of aleatoric uncertainty.
This is not always beneficial, as suggested by our analysis in Section 4, since learners
may require several comparisons of high-uncertainty pairs to get the order right.
CoLSTIM (Bengs, Saha, et al. 2022) is a contextual bandit algorithm, developed
for regret minimization and is not expected to perform well here. It is included to
illustrate the mismatch between regret minimization and our setting.

TrueSkill (Herbrich et al. 2006; Graepel 2012) is a non-contextual skill-rating
system that models the score of each item as a Gaussian distribution, disregarding
item attributes, and has been adopted in various works to score items based on
subjective pairwise comparisons (Larkin et al. 2022; Naik et al. 2014; Sartori et al.
2015). We use the sampling rule from Hees et al. (2016), designed for ordering.
Finally, we include Uniform sampling, and to illustrate the importance of accounting
for aleatoric uncertainty, we use a version of GURO called NormMin that ignores
the 9σpzJ

ijθtq term and plays the pair maximizing }zij}H´1
t pθtq, i.e., it minimizes the

2Our code is available at: https://github.com/Healthy-AI/GURO

https://github.com/Healthy-AI/GURO
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Figure 7.1: X-RayAge. Performance of active sampling strategies when compar-
isons are simulated using a logistic model according to (2.2). In-sample Kendall’s
Tau distance RID

on 200 images (left) and generalization error RIE
´ RID

for
models trained on 150 images and evaluated on 150 images from a different
distribution (right). All results are averaged over 100 different random seeds.

second-order term in Lemma 4.1. NormMin corresponds to the selection criterion
in the concurrent work Das et al. (2024), adapted to our problem of finding the
correct ordering. We refer the reader to Appendix A.2 for a detailed comparison
where NormMin performs significantly worse than Uniform on certain problem
instances, and Appendix A for details regarding the implementation and the choice
of hyperparameters for GURO, BayesGURO, and baselines.

6.1 Ordering X-ray images under the logistic model

Our first task (X-RayAge) is to order X-ray images based on perceived age (Ieki
et al. 2022) where the preference feedback follows a (well-specified) logistic model.
We base this experiment on the data from the Kaggle competition ”X-ray Age
Prediction Challenge” (Felipe Kitamura 2023) which contains more than 10 000
de-identified chest X-rays, along with the person’s true age. Features were extracted
using the 121-layer DenseNet in the TorchXrayVision package (Cohen et al. 2022)
followed by PCA projection, resulting in 35 features. A ridge regression model,
θ˚, was fit to the true age (R2 « 0.67). During active learning, feedback is drawn
from ppCij “ 1q “ σ

`

θJ
˚ zi,j ¨ λ

˘

, where λ (set to 0.1) controls the noise level. We
only include the fully contextual models here since they are well-specified by design,
meaning I can be ordered using only contextual features.

In the first setting, we sub-sample 200 X-ray images uniformly at random from
the full set. A ground-truth ordering of these elements is derived using the learned
linear model. Figure 7.1a shows the ordering error over 2 000 iterations. GURO
and BayesGURO perform similarly, both better than the baselines. BALD starts
off converging about as fast as GURO, but plateaus, most likely as a result of
actively avoiding comparisons with high aleatoric uncertainty—pairs where annotators
disagree in their preferences. The poor performance of CoLSTIM highlights the
discrepancy between regret minimization and recovering a complete ordering.
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Table 7.1: Datasets with preference feedback from annotators. Pretrained models
are ResNet34 (He et al. 2016), all-mpnet-base-v2 (Reimers and Gurevych 2019),
and FaceNet (Schroff et al. 2015).

Dataset n d #comparisons Data type Embedding Model
ImageClarity 100 63 27 730 Image ResNet34 (Imagenet)
WiscAds 935 162 9 528 Text all-mpnet-base-v2
IMDB-WIKI-SbS 6072 75 110 349 Image FaceNet (CASIA-Webface)

In the second setting, we evaluate how well the algorithms generalize to new
items. First, we sample 300 X-ray images from the full dataset. Next, we split
these into two sets, with one (ID) containing the youngest 50% and the other (IE)
the oldest 50%. The algorithms were then trained to order the list containing the
younger subjects, but were simultaneously evaluated on how well they could sort the
list containing the older subjects. The continuously measured difference in ordering
error evaluated on IE and ID are presented in Figure 7.1b. While all algorithms are
worse at ordering items in IE, GURO and BayesGURO achieve the lowest average
difference. Together with Figure 7.1a, this means that our proposed algorithms
achieved the best in-sample and out-of-sample orderings. For completeness, the
in-sample performance of algorithms in the generalization experiment in Figure 7.1b
are included in Appendix A.2.

6.2 Ordering items with human preference data
Next, we evaluate our algorithm on three publicly available datasets to study the
algorithms’ performance when preference feedback comes from human annotators
(see Table 7.1 for an overview, detailed information of datasets in Appendix A.1).
The datasets are IMDB-WIKI-SbS (Pavlichenko and Ustalov 2021), where annotators
have stated which of two people appear older, ImageClarity (Zhang et al. 2016),
where modified versions of the same image have been compared according to the level
of distortion, as well as the extended WiscAds dataset (Carlson and Montgomery
2017), where labels correspond to which political advertisement is perceived as more
negative toward an opponent. In all datasets, pairs of items were sampled uniformly
for annotation. For each experiment, we construct a feature vector ϕpxiq P Rd for all
n items using a pre-trained embedding model followed by PCA, applied to reduce
computational complexity. We restrict algorithms to only query pairs for which an
annotation exists and remove the annotation from the pool once queried. In cases
where multiple annotations exist for the same pair, the feedback is chosen randomly
among these.

The images in the ImageClarity dataset have been constructed to have an objective
ground truth ordering but this is not the case for WiscAds or IMDB-WIKI-SbS.
As the ground-truth ordering is generally unknown also in real-world applications,
we evaluate methods by the error on a held-out set of comparisons D1, R̂D1phq “

1
|D1|

ř

pi,j,cqPD1 1rhpi, jq ‰ cs. This serves as an empirical analog of Kendall’s Tau
distance and a minimizer of R̂D1phq will minimize RIphq for sufficiently large D1, but
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Figure 7.2: The empirical error R̂D1phq on a holdout comparison set D1 when
comparisons are made by human annotators. The plots are averaged over 100
(a,b) or 10 (c,d) seeds, and the shaded area represents one standard deviation
above and below the mean. For every seed, 10% of comparisons were used for
the holdout set. In (d) we initially order a list ID of 3 000 images. After 10 000
comparisons the remaining 3 072 images, IzID, are added.

will not converge toward 0 since there is inherent noise in annotations. This metric
makes no assumptions on the ground truth ordering unlike the alternative approach
of fitting an ordering to all available comparisons, see e.g., Maystre and Grossglauser
(2017). In Appendix A.2, we show results for the latter that highlight the limitations
of estimating a “ground-truth” ordering, as well as the similar results when measuring
the distance to the objective ground-truth ordering of the ImageClarity dataset. The
longest trajectory (single seed) for any algorithm took less than 35hrs to complete on
one core of an Intel Xeon Gold 6130 CPU and required at most 10 GB of memory.

In all experiments, we compare fully contextual (5.5) and hybrid (5.6) versions of
GURO, BALD, and Uniform, as well as TrueSkill. The results of each experiment
can be seen in Figure 7.2. Figure 7.2a shows that the ImageClarity dataset is the
easiest to order using contextual (non-hybrid) features. This is expected, as features
relevant to the level of distortion are low-level. In this case, the choice of adaptive
strategy has a modest impact on the ordering error. Figures 7.2b and 7.2c highlight
the differences between modeling strategies. The fully contextual algorithms initially
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improve rapidly, achieving a rough ordering of the items, before plateauing and not
making any real improvements. This indicates that the features are informative
enough to roughly order the list, but insufficient for retrieving a more granular
ordering. The non-contextual TrueSkill converges at a much slower pace but keeps
improving steadily throughout. Perhaps most interesting are the hybrid algorithms,
which seemingly reap the benefits of both methods, improving as quickly as the
contextual methods, but avoiding the plateau. In fact, in Figure 7.5 in the Appendix
we show that the hybrid models perform comparably to TrueSkill even when features
are completely uninformative.

The limitations of BALD are most noticeable in the fully contextual case, where
it plateaus at a higher error compared to GURO and Uniform. This is however not as
prominent when we use BALD in conjunction with our hybrid model, likely a result
of the increased dimensionality of the model causing BALD Hybrid to attribute
more of the observed errors to model uncertainty. While this initially causes the
algorithm to avoid fewer comparisons that are subject to aleatoric uncertainty, the
final iterations in Figure 7.2c suggest that BALD Hybrid can still run into this issue
given enough samples. In all experiments, GURO and GURO Hybrid perform better
than or similar to our baselines, never worse. Additionally, Figures 7.2b and 7.2c
showcase how our hybrid model can increase performance when used with existing
sampling strategies, such as BALD or Uniform.

The final experiment, visible in Figure 7.2d, is a few-shot scenario where after
some time, additional images are added to the pool of items. IMDB-WIKI-SbS
was used as it contained the highest number of both images and comparisons. The
initial pool consists of 3 000 images sampled from the dataset. After 10 000 steps,
the remaining 3 072 images were added to the pool. The results again emphasize
the differences between our three types of models; the increase in error of the fully
contextual model is very slight, likely a result of added samples being drawn from
the same distribution. For TrueSkill, the error increases drastically as a result of
the algorithm not having seen these items before and having no way of generalizing
the results of previous comparisons to them. Lastly, the hybrid algorithms seem to
be moderately affected. The error increases as the model has not yet tuned any of
the added per-item parameters, but the extent is much smaller than for TrueSkill
as the model can provide a rough ranking of the out-of-sample elements using the
contextual features.

7 Conclusion

We have demonstrated the benefits of utilizing contextual features in active preference
learning to efficiently order a list of items. Empirically, this leads to quicker conver-
gence, compared to non-contextual methods, and allows algorithms to generalize
out-of-sample. We derived an upper bound on the ordering error and used it to
design an active sampling strategy that outperforms or matches baselines on realistic
image and text ordering tasks. Both theoretical and empirical results highlight the
benefit of accounting for noise in comparisons when learning from human annotators.
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The optimality of our sampling strategy remains an open question. A future
direction is to derive a lower bound on the ordering error, and prove an—ideally
matching—algorithm-specific upper bound. However, constructing upper bounds for
related fixed-budget tasks is an open problem (Qin 2022). Moreover, motivated by the
annotation setting, our focus has been on reducing sample complexity and we leave it
to future work to explore potential linear approximations of the sampling criteria and
other trade-offs between sample complexity and computational complexity. Further,
our approach can potentially be improved by performing representation learning
throughout the learning process. Finally, our experiments are constrained to a
limited amount of already-collected (offline) human preference data, causing different
algorithms to select disproportionately similar comparisons. Future work should
evaluate the strategies in an online setting.
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A Notation

Table 7.2: Notation

I Collection of items I “ t1, ..., nu

n Number of items
d Dimension of item attributes
xi P Rd Context attributes for item i P I
zij P Rd zij “ xi ´ xj for i, j P I
yi Score for item i P I
ct P t0, 1u The outcome of the comparison at time t, 1 if it was preferred to jt

Dt Dt “ ppi1, j1, c1q, ..., pit, jt, ctqq

θ P Rd Model parameter
θ˚ P Rd Model parameter of the environment
θt P Rd Estimated parameter at time t
σp.q Sigmoid (logistic) function
9σp.q derivative of σp.q

Htpθq Hessian of the negative log-likelihood Htpθq :“
řt

s“1 9σpzJ
s θqzsz

J
s

H̃tpθq Hessian normalized by number of plays H̃tpθq :“ 1
t
Htpθq

θB,t P Rd The MAP estimate of θ at time t
HB,t The Hessian in the Bayesian setting, adjusted by the prior covariance H´1

B,0

}zij}H´1
t pθq }zij}H´1

t pθq “

b

zJ
ijH´1

t pθqzij

h Comparison model (binary output)
f Comparison logit (typically linear), e.g., fθpi, jq “ θJpxi ´ xjq
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A Algorithms

A.1 MLE estimator for logistic regression
The log-likelihood Ltpθq of data Dt “ tpis, js, csqut

s“1, with zs “ xis ´ xjs , under a logistic
regression model with parameters θ is defined by

Ltpθq “

t
ÿ

s“1

`

cs log σpθJzsq ` p1 ´ csqp1 ´ σpθJzsqq
˘

.

The maximum likelihood estimator (MLE) at time t is the parameters

θt “ arg max
θ

Ltpθq . (A.1)

The regularized estimator with ridge/ℓ2 penalty with parameter λ is

θR
t “ arg min

θ
´Ltpθq ` λ}θ}2

2 .

A.2 Bayesian estimator for logistic regression
θB,t is the MAP estimate of θ at time t according to the log likelihood

θB,t “ arg max
θ

ln ppθ | Dtq, (A.2)

where

ln ppθ | Dtq “ ´
1
2pθ ´ θB,0qJH´1

B,0pθ ´ θB,0q

`
ÿ

t

ct lnpσpzJ
it,jt

θqq ` p1 ´ ctq lnp1 ´ σpzJ
it,jt

θqq ` const.

The hessian at time t is defined as

HB,t “ HB,0 `
ÿ

pi,jqPDt

9σpzJ
i,jθB,tqzi,jzJ

i,j “ HB,0 ` Ht.

Moreover, if priors θB,0 “ 0 and H´1
B,0 “ Id are used, the log likelihood boils down to:

ln ppθ | Dtq “ ´
1
2 ||θ||22 `

ÿ

t

ct lnpσpzJ
it,jt

θqq ` p1 ´ ctq lnp1 ´ σpzJ
it,jt

θqq ` const

which implies that the MAP estimate will be the same as the MLE estimate with ridge
regularisation in the frequentist setting. Similarly, the Hessian becomes:

HB,t “ Ht ` Id

Sequential updates are also possible in the Bayesian setting by using your current
estimates as the new priors. Note that this will give slightly different results, as the
calculation of HB,t depends on the current estimate of θB,t.
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A.3 Stochastic Bayesian uncertainty reduction (BayesGURO)
We describe BayesGURO, a Bayesian sampling criterion, closely related to GURO. Consider
a Bayesian model of the parameter θ with ppθq the prior belief and ppθ | Dtq the posterior
after observing the preference feedback in Dt. A natural strategy for learning more about
the ordering of I is to sample items it, jt based on an estimate of the posterior variance of
predictions for their comparison,

it, jt “ arg max
i,jPID,iăj

V̂θ|Dt´1rσpθJzijqs . (A.3)

Here, V̂θ|Dt
rσpθT zijqs is an estimate of the variance of probabilities σpθT zijq, computed

from finite samples drawn from the posterior of θ. Estimating the variance in this way
both i) allows for tractable implementation, and ii) induces controlled stochasticity in the
selection of item pairs. This can be useful in batched learning settings so that multiple
pairs can be sampled within the same batch. A deterministic criterion would return the
same item pair every time until θ is updated. We refer to the sampling criterion in (5.4)
as BayesGURO.

For the logistic model considered in Section 4, using Laplace approximation with a
Normal prior N p0, H´1

B,0q on θ, the Bayesian criterion in (5.4) is related to the GURO
sampling criterion in (5.2) through the first-order Taylor expansion of the variance:

Vθ|Dt
pσpθJzijqq « p 9σpEθ|Dt

rθJzijsqq2Vθ|Dt
rθJzijs “ p 9σpθJ

B,tzijq||zij ||H´1
B,tpθB,tq

q2 ,

where θB,t is the MAP estimate of θ at time t and HB,t is the Hessian adjusted by the prior
covariance H´1

B,0 (further described in Appendix A.2). Thus, to a first-order approximation,
for a large number of posterior samples, the GURO and BayesGURO active learning criteria
are equivalent, save for the influence of the prior. In practice, we find that the Bayesian
variant lends itself well to sequential updates of the posterior. The choice of prior ppθq,
which could be useful under strong domain knowledge, and the stochasticity of using few
posterior samples to approximate V make the two criteria distinct.

A.4 Uniform sampling
The uniform sampling algorithm is given in Algorithm 7.2. The corresponding Bayesian
version replaces line 5 with the MAP estimate.

Algorithm 7.2 Uniform sampling algorithm
Require: Training items ID, attributes X “ txiuiPId

1: for t “ 1, ..., T do
2: Sample pit, jtq uniformly
3: Observe ct from noisy comparison (annotator)
4: Dt “ Dt´1 Y tit, jt, ctqu

5: Let θt “ MLEpDtq

6: end for
7: Return hT
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Algorithm 7.3 BALD bandit
Require: Training items ID, attributes X “ txiuiPId

1: Initialize θB,0 “ 0, HB,0 “ λ´1I
2: for t “ 1, ..., T do
3: Draw pit, jtq = arg maxi,j Hry | zi,j, Dt´1s ´ Eθ„ppθ|Dt´1qrHry | zi,j, θss

4: Observe ct from noisy comparison (annotator)
5: Dt “ Dt´1 Y tit, jt, ctqu

6: Let θt “ MAPpDtq

7: Update HB,t Ð HB,0 `
ř

pi,jqPDt
9σpzJ

i,jθtqzi,jz
J
i,j

8: end for
9: Return hT

A.5 BALD
Where the posterior is calculated as in Appendix A.2 and Hry | zi,j , Dt´1s´Eθ„ppθ|Dt´1qrHry |

zi,j , θss is approximated as in Appendix A.5.

Deriving the BALD sampling criterion

The BALD criteria formalized using our notation becomes

arg max
i,j

Hry | zi,j , Dts ´ Eθ„ppθ|DtqrHry | zi,j , θss,

where H represents Shannon’s entropy

hppq “ ´p log2ppq ´ p1 ´ pq log2p1 ´ pq.

The first term of the equation becomes

Hry | zij , Dts “ hpP rps y | zi,j , Dtqq “ h

ˆ
ż

P rps y | zi,j , θqP rps θ | Dtqdθ

˙

.

Here P rps y | zi,j , Dtq is the predictive distribution for our Bayesian logistic regression
model. As covered in Chapter 4 of Bishop and Nasrabadi (2006), this expectation cannot
be evaluated analytically but can be approximated using the probit function Φ;

P rps y | zij , Dtq « Φ

¨

˝

θJ
t zi,j

b

λ´2 ` ||zij ||2H´1
t

˛

‚« σ

¨

˚

˚

˝

θJ
t zi,j

c

1 `

π||zij ||2
H´1

t
pθ˚q

8

˛

‹

‹

‚

.

Next, the term Eθ„ppθ|DtqrHry | zi,j , θss must be calculated. The true definition is

Eθ„ppθ|DtqrHry | zi,j , θss “

ż

hpσpθJzi,jqqN pθ | θt, H´1
t qdθ.

To make this a one variable integral, let X “ θJzi,j define a new random variable.
Since θ „ N pθt, H´1

t q, and zi,j is just a constant vector, we know that X will follow a
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univariate normal distribution X „ N pθJ
t zi,j , ||zij ||2H´1

t

q. This allows us to rewrite the
integral as

ż

hpσpθT zqqN pθ | θt, H´1
t qdθ “

ż

hpσpxqqN pθJ
t zi,j , ||zij ||2H´1

t
qdx.

However, this integral has no closed form solution. Instead we perform the same
strategy as in Houlsby et al. (2011) and do a Taylor expansion of ln hpσpθJzqq. The
third-order Taylor expansion gives us

hpσpxqq « exp
ˆ

´
x2

8 ln 2

˙

.

Inserting this, the term can be approximated as

ż

hpσpxqqN px | θJ
t zi,j , ||zij ||2H´1

t
qdx «

ż

exp
ˆ

´
x2

8 ln 2

˙

N px | θJ
t zi,j , ||zij ||2H´1

t
qdx

“
C

b

||zij ||2H´1
t

` C2
exp

˜

´
pθJ

t zi,jq2

2p||zij ||2H´1
t

` C2q

¸

,

where C “
?

4 ln 2. Finally, we arrive at an estimation of the objective function we
wish to maximize:

Hry | zi,j , Dts ´ Eθ„ppθ|DtqrHry | zi,j , θss « h

¨

˝σ

¨

˝

θJ
t zi,j

b

1 ` π
8 ||zij ||2H´1

t

˛

‚

˛

‚

´
C

b

||zij ||2H´1
t

` C2
exp

˜

´
pθJ

t zi,jq2

p||zij ||2H´1
t

` C2q

¸
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A Proofs of Lemma 4.1 and Theorem 4.2
A.1 Proof of Lemma 4.1
Proof. We now proceed to bound

P
`

|σpzJ
ijθtq ´ σpzJ

ijθ˚q| ą ∆
˘

.

From the self-concordant property of logistic regression we have (Faury et al. 2020)

|σpzJ
ijθtq ´ σpzJ

ijθ˚q| ď 9σpzijJθtq|zJ
ijpθt ´ θ˚q| `

1
4 |zJ

ijpθt ´ θ˚q|2.

We will prove a high probability bound on the event

9σpzijJθtq|zJ
ijpθt ´ θ˚q| `

1
4 |zJ

ijpθt ´ θ˚q|2 ď ∆. (A.1)

Directly trying to bound the LHS in Equation A.1 will result in a rather messy expression.
Instead, we define the events

E1 :“
"

9σpzijJθtq|zJ
ijpθt ´ θ˚q| ď

∆
2

*

E2 :“
"

1
4 |zJ

ijpθt ´ θ˚q|2 ď
∆
2

*

.

Clearly E1
Ť

E2 implies the expression in Equation A.1. Assume we have bounds on the
complement of these events, P pEc

1q ď α and P pEc
2q ď β. Then

P
`

|σpzJ
ijθtq ´ σpzJ

ijθ˚q| ą ∆
˘

ď α ` β ` αβ

ď 2α ` 2β.

We now proceed to bound the probability of these complements separately.
Step 1. Relating θt to θ˚: The first challenge in our analysis to is relate θ˚ and θt.

In contrast to linear regression, where we have a closed-form expression for θt, there is no
analytical solution for θt given a set of observation. However, we know that θt is the MLE,
corresponding to

θt “ arg max
θ

Ltpθq

where

Ltpθq “

t
ÿ

s“1
cs log σ

`

zJ
s θ

˘

` p1 ´ csq log
`

1 ´ σ
`

zJ
s θ

˘˘

.

We have

∇θLtpθq “

t
ÿ

s“1
cszs ´

t
ÿ

s“1
σ
`

zJ
s θ

˘

zs

looooooomooooooon

gtpθq

and hence gtpθtq “
řt

s“1 cszs.
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A standard trick in logistic bandits (Filippi et al. 2010; Faury et al. 2020; Jun et al.
2021) is to relate θ˚ ´ θt to gtpθ˚q ´ gtpθtq. Especially, the following equality is due to the
mean-value theorem (see Filippi et al. (2010))

gtpθ˚q ´ gtpθtq “ Htpθ
1q pθ˚ ´ θtq (A.2)

where θ1 is some convex combination of θ˚, θt. Note that Htpθ
1q has full rank.

Using Equation A.2 yields
ˇ

ˇzJ
ij pθ˚ ´ θtq

ˇ

ˇ “
ˇ

ˇzJ
ijH´1

t pθ1q pgtpθ˚q ´ gtpθtqq
ˇ

ˇ

Furthermore, since gtpθtq “
řt

s“1 cszs, due to ∇θLtpθtq “ 0, we have

gtpθtq ´ gtpθ˚q “

t
ÿ

s“1

`

cs ´ σ
`

zJ
s θ˚

˘˘

loooooooomoooooooon

ϵs

zs

where ϵs is a sub-Gaussian random variable with mean 0 and variance ν2
s :“ 9σ

`

zJ
s θ˚

˘

. We
define

St :“
t
ÿ

s“1
ϵszs.

We now have
ˇ

ˇzJ
ij pθ˚ ´ θtq

ˇ

ˇ “
ˇ

ˇzJ
ijH´1

t pθ1qSt

ˇ

ˇ

and Lemma 10 in Faury et al. (2020) states that H´1
t pθ1q ď p1 ` 2SqH´1

t pθ˚q where
||θ˚||2 ď S. Hence,

ˇ

ˇzJ
ij pθ˚ ´ θtq

ˇ

ˇ ď p1 ` 2Sq
ˇ

ˇzJ
ijH´1

t pθ˚qSt

ˇ

ˇ

Step 2. Tail bound for vector-valued martingales:
We will now prove an upper bound on the probability that

ˇ

ˇzJ
ijH´1

t pθ˚qSt

ˇ

ˇ deviates much
from a certain threshold. This step is based on the proof of Lemma 1 in Filippi et al. (2010)
which itself is based on a derivation of a concentration inequality in Rusmevichientong and
Tsitsiklis (2010). The difference compared to Filippi et al. (2010) is that we work with
the Hessian Htpθ˚q instead of the design matrix for linear regression Vt “

ř

s xsxJ
s . This

require us to construct a slightly different martingale.
Let A and B are two random variables such that

E
„

exp
"

γA ´
γ2

2 B2
*ȷ

ď 1, @γ P R (A.3)

then due to Corollary 2.2 in Peña et al. (2004) it holds that @a ě
?

2 and b ą 0

P

˜

|A| ě a

d

pB2 ` bq

ˆ

1 `
1
2 log

ˆ

B2

b
` 1

˙˙

¸

ď exp
"

´a2

2

*

. (A.4)
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Let η P Rd and consider the process

Mγ
t pθ˚, ηq :“ exp

!

γηJSt ´ γ2||η||2Htpθ˚q

)

. (A.5)

We will now proceed to prove that Mγ
t pθ, ηq is a non-negative super martingale satisfying

Equation A.3. Note that

γηJSt ´ γ2||η||2Htpθ˚q “

t
ÿ

s“1

´

γηJzsϵs ´ 9σpθJzsqγ2 `ηJzs

˘2¯

loooooooooooooooooooomoooooooooooooooooooon

Fs

“

t
ÿ

s“1
Fs.

Further we use the fact that ϵs is sub-Gaussian with parameter νs, .i.e,

E rexptλϵsus ď exp
␣

ν2
s λ2( , @λ ą 0.

Let Ds´1 denote the observations up until time s, then

E rexptFsu | Ds´1s “ E

»

–exp

$

&

%

γηJzs
loomoon

λ

ϵs

,

.

-

fi

fl exp

$

’

&

’

%

´ 9σpθJ
t zsq

looomooon

ν2
s

γ2 `ηJzs

˘2

,

/

.

/

-

ď exp
␣

ν2
s λ2( exp

␣

´ν2
s λ2( “ 1.

This also implies

E rMγ
t pθ˚, ηq | Dt´1s ď Mγ

t´1pθ˚, ηq

and Mγ
t pθ˚, ηq is a super-martingale satisfying

E
”

exp
!

γηJSt ´ γ2||η||2Htpθ˚q

)ı

ď 1, @γ ě 0

and we can apply the results of Peña et al. (2004).
We now follow the last step of the proof of Lemma 1 in Filippi et al. (2010). We let

a “

b

2 log 1
δ for some δ P p0, 1{eq and let b “ λ0}η}2

2. We have with probability at least
1 ´ δ

|ηJSt| ď

c

2 log 1
δ

g

f

f

e}η}2
Htpθ˚q`λ0}η}2

2

˜

1 `
1
2 log

˜

1 `
}η}2

Htpθ˚q

λ0}η}2
2

¸¸

.

Rearanging and using the fact that λ0||η||22 ď }η}2
Htpθ˚q

ď t}η}2 yields

|ηJSt| ď ρpλ0q||η||Htpθ˚q

c

2 log t

δ
. (A.6)

where ρ is defined as

ρpλ0q “

d

3 ` 2 log
ˆ

1 `
4Q2

λ0

˙

.
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We take Mt to be a matrix such that M2
t “ Htpθ˚q and note that for any τ ą 0

P
´

||St||
2
H´1

t pθ˚q
ě dτ2

¯

ď

d
ÿ

i“1
P
`ˇ

ˇSJ
t M´1

t ei

ˇ

ˇ ě τ
˘

where ei is the i:th unit vector. Equation A.6 with η “ M´1
t ei together with ||M´1

t ei||Htpθ˚q “

1 yield that the following holds with with probability at least 1 ´ δ

||St||H´1
t pθ˚q

ď ρpλ0q
a

2d log t

c

log d

δ
. (A.7)

Step 3. (Unverifiable) High-probability bounds on E1 and E2.

We now have enough machinery to state high-probability bounds for our two events.
These bounds will be unverifiable in the sense that the depend on the true parameter θ˚

which is not known to us during runtime. We derive verifiable bounds in the next step of
the proof.

Recall that H´1
t pθ˚q is symmetric. We apply Equation A.6 with η “ H´1

t pθ˚qzij and
α ą 0 in place of δ. First, we note that }H´1

t pθ˚qzij}Htpθ˚q “ }zij}H´1
t pθ˚q

which implies
with probability at least 1 ´ α

ˇ

ˇzJ
ijH´1

t pθ˚qSt

ˇ

ˇ “
ˇ

ˇSJ
t H´1

t pθ˚qzij

ˇ

ˇ ď ρpλ0q}zij}H´1
t pθ˚q

c

2 log t

α
. (A.8)

We solve for smallest possible α P p0, 1{eq such that

p1 ` 2Sqρpλ0q 9σpzJ
ijθ˚q||zij ||H´1

t pθ˚q

c

2 log t

α
ď

∆
2

Rearanging yields

α ď exp

$

’

&

’

%

´∆2

8ρ2pλ0qp1 ` 2Sq2
´

9σpzJ
ijθ˚q||zij ||H´1

t pθ˚qq

¯2 ` log T

,

/

.

/

-

. (A.9)

For E2 and the bound on its probability, β ą 0 we have

1
4 |zJ

ijpθt ´ θ˚q|2 ď
1
2p1 ` 2Sq2||zij ||2H´1

t pθ˚q
ρ2pλ0q log t

β
ď

∆
2

and

β ď exp

$

’

&

’

%

´∆

ρ2pλ0qp1 ` 2Sq2
´

||zij ||H´1
t pθ˚qq

¯2 ` log T

,

/

.

/

-

. (A.10)

Note that both Equation A.9 and Equation A.10 are under the assumption that the RHS
satisfy ă 1{e since this is required in order to apply the results of Peña et al. (2004). As we
discuss in the main text, these quantities are approaching zero as OpTe´T q, ignoring various
constants, for reasonable sampling strategies and will satisfy this condition eventually.

Step 4. (Verifiable) High-probability bounds on E1 and E2.
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The bounds in the previous step depend on the true parameter θ˚ which we do not
have access to in practise. We again use Lemma 10 of Faury et al. (2020) together with
Cauchy-Schwartz

|zijpθ˚ ´ θtq| “

ˇ

ˇ

ˇ
zJ

ijH´1{2
t pθ1qH1{2

t pθ1qSt

ˇ

ˇ

ˇ

ď p1 ` 2Sq||zij ||H´1
t pθtq

||St||H´1
t pθ˚q

.

Using Equation A.7 we have with probability at last 1 ´ α

p1 ` 2SqσpzJ
ijθ˚q||zij ||H´1

t pθtq
||St||H´1

t pθ˚q
ď p1 ` 2Sq 9σpzJ

ijθ˚q||zij ||H´1
t pθtq

ρpλ0q
a

2d log t

c

log d

α
.

(A.11)

We solve for smallest α P p1{eq such that Equation A.11 is smaller than ∆ij{2. This
yields

α ď exp

$

’

&

’

%

´∆2

8dρ2pλ0qp1 ` 2Sq2
´

9σpzJ
ijθT q||zij ||H´1

t pθT qq

¯2 ` log dT

,

/

.

/

-

.

Same steps for β yields

β ď exp

$

’

&

’

%

´∆

dρ2pλ0qp1 ` 2Sq2
´

||zij ||H´1
t pθT qq

¯2 ` log dT

,

/

.

/

-

.

For brevity, define C1 “ ρ2pλ0qp1 ` 2Sq2.
Using the definition of H̃t yields the statement of Lemma 4.1.

A.2 Proof of Theorem 4.2
Proof. We let i ą j denote that i is preferred to j. W.l.o.g assume 1 ą 2 ą ... ą n. The
key observation is thatfor any i and j such that i ă j it holds that

∆i,j ą pj ´ iq∆˚.

If we get the wrong relation between i, j then σpzJ
ijθ˚q ´ σpzJ

ijθT q ą pj ´ iq∆˚. Lemma 4.1
implies

P pσpzJ
ijθ˚q´σpzJ

ijθT q ą pj ´ iq∆q ď dT pexp

$

’

&

’

%

´pj ´ iq∆2

8dρ2pλ0qp1 ` 2Sq2
´

9σpzJ
ijθT q||zij ||H´1

t pθT qq

¯2

,

/

.

/

-

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

αj´i
ij

` exp

$

’

&

’

%

´pj ´ iq∆

dρpλ0qp1 ` 2Sq2
´

||zij ||H´1
t pθT qq

¯2

,

/

.

/

-

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

βj´i
ij

q.
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Let RpθT q be the ordering error of the n items. Then, under a uniform distribution
over items we have

ErRpθT qs ď
4dT

npn ´ 1q

¨

˚

˚

˚

˚

˝

n´1
ÿ

i“1

n
ÿ

j“i`1
αj´i

ij

looooooomooooooon

A

`

n´1
ÿ

i“1

n
ÿ

j“i`1
βj´i

ij

looooooomooooooon

B

˛

‹

‹

‹

‹

‚

(A.12)

A and B will be upper bounded using the same argument. We now upper bound sum
A

Let α˚ :“ exp
#

´∆2
˚

8dC1 maxi,j 9σpzJ
ijθT q||zij ||2

H´1
t

pθ˚q

+

then

A ď

n´1
ÿ

i“1

n
ÿ

j“i`1
αj´i

˚ ď pn ´ 1q

˜

n
ÿ

j“0
αj

˚ ´ 1
¸

ď pn ´ 1q

ˆ

1
1 ´ α˚

´ 1
˙

.

This follows from the definition of δ1,˚ and properties of the geometric sum. It is easy to
see that 1

1´e´x ´ 1 “ 1
ex´1 . Hence,

4dT

npn ´ 1q
A ď

4dT

n

`

α´1
˚ ´ 1

˘´1
.

For B we perform the same steps with β˚ :“ exp
#

´∆˚

dC1 maxi,j ||zij ||2
H´1

t
pθ˚q

+

to get

4dT

npn ´ 1q
A ď

4dT

n

`

β´1
˚ ´ 1

˘´1
.

Combing yields and

E rRpθT qs ď
4dT

n

´

`

α´1
˚ ´ 1

˘´1
`
`

β´1
˚ ´ 1

˘´1
¯

By Markov’s inequality we have

P pRpθT q ě ϵq ď
4dT

ϵn

´

`

α´1
˚ ´ 1

˘´1
`
`

β´1
˚ ´ 1

˘´1
¯

. (A.13)

A.3 Extensions of current theory
Regularized estimators. In our analysis in Section 4, we have assumed that θT

is the maximum likelihood estimate and that HpθT q has full rank. This can be relaxed
by considering ℓ2 (Ridge) regularization where θλ0,T is the optimum of the regularized
log-likelihood with regularization λ0I and Hλ0pθλ0,T q “

řT
s“1 9σpzJ

s θλ0,T qzszJ
s ` λ0I. The

same machinery used to prove Lemma 4.1 (Filippi et al. 2010; Faury et al. 2020) can be
applied to this regularized version with small changes to the final bound.
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Generalized linear models. It is also possible to derive similar results for generalized
linear models with other link functions, µpzJ

ijθ˚q, by using the general inequality Hpθq ě

κ´1V with V “
řT

s“1 zszJ
s and κ ě 1{ minzij 9µpzJ

ijθ˚q. We conjecture that this will yield
a scaling of „ expp´∆2T {κq where, unfortunately, κ might be very large. For a more
thorough discussion on the dependence on κ in generalized linear bandits, see Chapter 19
of Lattimore and Szepesvári (2020).

Lower and algorithm-specific upper bounds on the ordering error. A
worst-case lower bound on the ordering error can be constructed in the fixed-confidence
setting, where the goal is to minimize the number of comparisons until a correct ordering is
found with a given confidence, by following Garivier and Kaufmann (2016). This involves
defining the set of alternative models Altpθ˚q which differs from θ˚ in their induced ordering
of I. The bound is then constructed by optimizing the frequency of comparisons of each
pair of items so that such alternative models are distinguished as much as possible from
the true parameter. We have left this result out of the paper as we find it uninformative
in the regime when the number of comparisons is small, (see Simchowitz et al. (2017)
for a discussion on the limitations of these asymptotic results in the standard bandit
setting). Constructing a lower bound for our fixed-budget setting, of learning as good an
ordering as possible with a fixed number of comparisons, is much more challenging. The
fixed-confidence result yields a bound for the fixed-budget case (Garivier and Kaufmann
2016), but constructing either a tight lower bound or a tight algorithm-specific upper
bound is an open problem (Fang 2022).
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A Comparison with regret minimization
Bengs, Saha, et al. (2022) considered a problem formulation where the goal is to learn a
parameter θ which determines the utility Yi,t for a set of arms i “ 1, ..., n as a function of
observed context vectors xi,t in a sequence of rounds t “ 1, ..., T ,

Yi,t “ θJXi,t .

The probability that item i is preferred over j (denoted i ą j) in round t is decided through
a comparison function F ,

P rps i ą j | Xi,t, Xj,tq “ F pYi,t ´ Yj,tq .

The goal in their setting is to, in each round, select two items pit, jtq so that their maximum
(or average) utility is as close as possible to the utility of the best item. The expected
regret in their average-utility setting is

ℜBSH “ Er

T
ÿ

t“1
2Yi˚

t ,t ´ Yit,t ´ Yjt,ts .

Theorem A.1 (Informal). An algorithm which achieves minimal regret in the setting of
Bengs, Saha, et al. (2022) can perform arbitrarily poorly in our setting.

Proof. The optimal choice of arm pair in the BSH setting is the optimal and next-optimal
arm pi˚

t , i1
tq such that i˚

t ą i1
t ą j for any other arms j. Assume that the ordering of all

other arms j is determined by a feature Xj,tpkq but that Xi˚
t ,tpkq “ Xi1

t,tpkq. Then, no
knowledge will be gained about arms other than the top 2 choices under the BSH regret.
As the number of arms grows larger, the error in our setting grows as well.

Saha (2021) study the same average-utility regret setting and give a lower bound
under Gumbel noise. Saha and Krishnamurthy (2022) investigated where there is a
computationally efficient algorithm that achieves the derived optimality guarantee.
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A Experiment details
For BayesGURO and BALD, the posterior ppθ | Dtq is estimated using the Laplace
approximation as described in Chapter 4 of Bishop and Nasrabadi (2006). With this
approximation, the covariance matrix is the same as the inverse of the Hessian of the
log-likelihood. For both methods, the priors θB,0 “ 0d and H´1

B,0 “ Id were used, and
sequential updates were performed every iteration. The sample criterion for BALD under
a logistic model is given in Appendix A.5. For BayesGURO, 50 posterior samples were
used to estimate V̂θ|Dt

rσpθT zijqs for every zij . The hybrid algorithms follow the same
structure with the added constraint that each per-item parameter ζi is independent of other
parameters. This allows for efficient updates of H´1

B,t by using sparsity in the covariance.
GURO, CoLSTIM, and Uniform use LogisticRegression from Scikit-learn (Pedregosa

et al. 2011) with default Ridge regularization (C “ 1) and the lbfgs optimizer. The former
two updates θt every iteration using the full history, Dt in all experiments except for
IMDB-WIKI-SbS, where GURO updates θt every 25th iteration. This caused no noticeable
change in performance as GURO still updates H´1

t every iteration using the Sherman-
Morrison formula. Note that when using the Sherman-Morrison formula in practice, you
only get an estimate of H´1

t pθtq since previous versions have been calculated using older
estimates of θ. This method for approximating the inverse hessian is covered in Chapter 5
of Bishop and Nasrabadi (2006) and when we compared it to calculating H´1

t pθtq from
scratch every iteration we observed that the methods performed equally. The design matrix
for CoLSTIM is updated as in Bengs, Saha, et al. (2022): the confidence width c1 was
chosen to be

a

d logpT q, and the perturbed values were generated using the standard
Gumbel distribution.

To increase computational efficiency for the large IMDB-WIKI-SbS dataset, the hybrid
algorithms did not evaluate all „ 100 000 comparisons at every time step. Instead, a
subset of 5 000 comparisons was first sampled, and the highest-scoring pair in this set was
chosen. This resulted in a large speed-up and no noticeable change in performance during
evaluation.

A.1 Datasets
ImageClarity Data available at:
https://dbgroup.cs.tsinghua.edu.cn/ligl/crowdtopk.

This dataset contained differently distorted versions of the same image. To extract
relevant features, we used a ResNet34 model (He et al. 2016) that had been pre-trained on
Imagenet (Deng et al. 2009). After PCA projection feature dimensionality was reduced to
d “ 63. The dataset consisted of 100 images and 27 730 comparisons. Since the type of
distortion is the same for all images, the dataset has a true ordering with regards to the
strength of the distortion applied.

WiscAdds Data available at:
https://dataverse.harvard.edu/dataset.xhtml?persistentId= doi:10.7910/DVN/0ZRGEE

(license: CC0 1.0).
The WiscAdds dataset, containing 935 political texts, has been extended with 9 528

pairwise comparisons by Carlson and Montgomery (2017). In comparisons, annotators have
stated which of two texts has a more negative tone toward a political opponent. To extract

https://dbgroup.cs.tsinghua.edu.cn/ligl/crowdtopk
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/0ZRGEE
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(a) X-RayAge. NormMin included in the ex-
periment shown in Figure 7.1a.
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ure 7.1b.

Figure 7.3: Additional figures from the X-RayAge experiment.

general features from the text, sentences were embedded using the pre-trained all-mpnet-
base-v2 model from the Sentence-Transformers library (Reimers and Gurevych 2019).
After applying PCA to the sentence embeddings, each embedding had a dimensionality of
d “ 162.

IMDB-WIKI-SbS Data available at:
https://github.com/Toloka/IMDB-WIKI-SbS (license: CC BY).

IMDB-WIKI-SbS consists of close-up images of actors of different ages. For each
comparison, the label corresponds to which of two people appears older. The complete
dataset consists of 9 150 images and 250 249 comparisons, but images that were grayscale
or had a resolution lower than 160 ˆ 160 were removed, resulting in 6 072 images and
110 349 comparisons. We extract features from each image using the Inception-ResNet
implemented in FaceNet (Schroff et al. 2015) followed by PCA, resulting in d “ 75 features
per image.

A.2 Additional figures
X-RayAge

To highlight the importance of the first-order term in Lemma 4.1, we evaluated NormMin
on the same X-ray ordering task as in Figure 7.1a. The results, shown in Figure 7.3a,
indicate that not only does the algorithm perform worse than GURO, but is seemingly also
outperformed by a uniform sampling strategy. Furthermore, for completeness, we include
Figure 7.3b which shows the in-sample error, RID

, during the generalization experiment.

Synthetic Example and Illustration of Upper Bound

In this setting, 100 synthetic data points were generated. Each data point consisted
of 10 features, where the feature values were sampled according to a standard normal
distribution. The true model, θ˚, was generated by sampling each value uniformly between
´3 and 3. The pairwise comparison feedback was simulated the same way as in Section
6.1, with λ “ 0.5. The upper bound of the probability that Rpθtq ě 0.2 was calculated

https://github.com/Toloka/IMDB-WIKI-SbS
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every iteration according to Theorem 4.2. Each algorithm was run for 2000 comparisons,
updating every 10th, the results of which can be seen in Figure 7.4. We observe in Figure
7.4b that our greedy algorithms are seemingly the fastest at minimizing the upper bound.
The order of performance follows the same trend as in the experiments of Section 6.

0 250 500 750 1000 1250 1500 1750 2000
Comparisons

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R(
t)

Uniform
GURO
BayesGURO
BALD
CoLSTIM
NormMin

(a) The risk Rpθtq, defined as the normalized
Kendall’s tau distance between estimated and
true orderings.

0 250 500 750 1000 1250 1500 1750 2000
Comparisons

0.0

0.2

0.4

0.6

0.8

1.0

U
pp

er
 b

ou
nd

 o
n 

P(
R(

t)
0.

2)

Uniform
GURO
BayesGURO
BALD
CoLSTIM
NormMin

(b) The probability that the frequency of pair-
wise inversions is ě 20% after every comparison,
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Figure 7.4: The loss (left) along with the upper bound (right) when ordering a
list of size 100 in a synthetic environment. The results have been averaged over
50 seeds.

Randomly initialized representation

As discussed in Section 6.2, the performance of our contextual approach will depend on the
quality of the representations. To underscore the practical usefulness of our algorithms, we
have performed the same experiment as in Figure 7.2c, but this time the model used to
extract image features was untrained (i.e., the weights were random). As to be expected,
the results, shown in Figure 7.5, demonstrate that the fully contextual algorithms have no
real way of ordering the items according to these uninformative features. However, GURO
Hybrid performs similarly to TrueSkill, despite model misspecification. This is promising,
since you may not know in advance how informative the extracted features will be for the
target ordering task.
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Figure 7.5: IMDB-WIKI-SbS. The same experiment as presented in Figure.
7.2c, but the model used for feature extraction is untrained.
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ImageClarity ground truth

The ImageClarity dataset consists of multiple versions of the same image, with the same
distortion applied to it to varying degrees. Due to this artificial construction, the pairwise
comparisons should, given enough samples, reflect the magnitudes of the applied distortions.
In Figure 7.6 we perform the same experiment as in Figure 7.2a, but instead of evaluating
on a holdout comparison set, we measure the distance to the ground-truth ordering. The
overall results are very similar, although we do see a slight increase in the performance of
contextual algorithms compared to the non-contextual TrueSkill.
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Figure 7.6: ImageClarity. Same experiment as in Figure 7.2a, but now measuring
the distance to the ground-truth ordering. Averaged over 25 seeds along with the
1-sigma error region.

Ground truth ordering using the Bradley-Terry model

An alternate approach to evaluate ordering quality is to estimate a ”ground-truth” ordering
by applying the popular Bradley-Terry (BT) model (Bradley and Terry 1952) to all available
comparisons. We used the CrowdKit library (Ustalov et al. 2024) to find the MLE scores for
each item and ordered the elements accordingly. In Figure 7.8 we run the same experiments
as in Figure 7.2, but instead measure the distance to the constructed BT ordering. The
overall trends remain, but for (b) and (c) there is a slight shift for the later iterations.
More specifically we see non-contextual TrueSkill eventually overtaking the contextual
algorithms.

The issue is that algorithms with orderings closer to the maximum likelihood estimate
of the BT model will be favored. To exemplify this we use the ImageClarity dataset since
it contains the largest number of comparisons relative to the number of items. We sample
1 000 comparisons and let this be the collection that is available to the algorithms. We
further construct two target orderings, one from the BT estimate using the sampled subset
of comparisons, and a second, more probable ordering, from the BT estimate using all
27 730 available comparisons. Figure 7.7 shows the distance between the GURO and TS
algorithms and the different target orderings, where dashed lines indicate the distance to
the ordering generated using the full list of comparisons. If we only look at the distance to
the ordering produced using our subset of comparisons, TrueSkill seemingly outperforms
GURO after about 350 comparisons. However, if we instead measure the distance to the
more probable ordering, we see that GURO converges toward a lower distance. Note that
these are the same orderings, evaluated against different targets. This is likely the effect
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we observe in Figure 7.8b and c, but not in Figure 7.8a as a result of the high amount of
comparisons available to us.
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Figure 7.7: ImageClarity. The same experiment as presented in Figure 7.2a,
but we instead measure the distance to target orderings that correspond to
the maximum likelihood estimate of the BT model using different numbers of
comparisons. The dashed lines show the distance to the BT estimate using all
27 730 comparisons.
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